Publications by authors named "Victoria A Milway"

We report a series of 3d-4f complexes {Ln2 Cu3 (H3 L)2 Xn } (X=OAc(-) , Ln=Gd, Tb or X=NO3 (-) , Ln=Gd, Tb, Dy, Ho, Er) using the 2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6 L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2 Cu3 (H3 L)2 Xn } complexes is seen by changing the auxiliary ligands (X=OAc(-) for NO3 (-) ).

View Article and Find Full Text PDF

New {TbCu3} and {DyCu3} single-molecule magnets (SMMs) containing a low-symmetry Ln(III) center (shape measurements relative to a trigonal dodecahedron and biaugmented trigonal prism are 2.2-2.3) surrounded by three Cu(II) metalloligands are reported.

View Article and Find Full Text PDF

Seven new dinuclear iron(II) complexes of the general formula [Fe(II)2(PMRT)2](BF4)4·solvent, where PMRT is a 4-substituted-3,5-bis{[(2-pyridylmethyl)-amino]methyl}-4H-1,2,4-triazole, have been prepared in order to investigate the substituent effect on the spin crossover event. Variable temperature magnetic susceptibility and (57)Fe Mössbauer spectroscopy studies show that two of the complexes, [Fe(II)2(PMPT)2](BF4)4·H2O (N(4) substituent is pyrrolyl) and [Fe(II)2(PM(Ph)AT)2](BF4)4 (N(4) is N,N-diphenylamine), are stabilized in the [HS-HS] state between 300 and 2 K with weak antiferromagnetic interactions between the iron(II) centers. Five of the complexes showed gradual half spin crossover, from [HS-HS] to [HS-LS], with the following T(1/2) (K) values: 234 for [Fe(II)2(PMibT)2](BF4)4·3H2O (N(4) is isobutyl), 147 for [Fe(II)2(PMBzT)2](BF4)4 (N(4) is benzyl), 133 for [Fe(II)2(PM(CF3)PhT)2](BF4)4·DMF·H2O (N(4) is 3,5-bis(trifluoromethyl)phenyl), 187 for [Fe(II)2(PMPhT)2](BF4)4 (N(4) is phenyl), and 224 for [Fe(II)2(PMC16T)2](BF4)4 (N(4) is hexadecyl).

View Article and Find Full Text PDF

Coordination polymers and metal-organic rotaxane frameworks are reported where the organic linker is replaced by functionalised inorganic clusters that act as bridging ligands.

View Article and Find Full Text PDF

Three bis-tetradentate acyclic amine ligands differing only in the arm length of the pyridine pendant arms attached to the 4,6-positions of the pyrimidine ring, namely, 4,6-bis[N,N-bis(2'-pyridylethyl)aminomethyl]-2-phenylpyrimidine (L(Et)), 4,6-bis[N,N-bis(2'-pyridylmethyl)aminomethyl]-2-phenylpyrimidine (L(Me)), and 4,6-[(2'-pyridylmethyl)-2'-pyridylethyl)aminomethyl]-2-phenylpyrimidine (L(Mix)) have been used to synthesize nine air-sensitive diiron(II) complexes: [Fe(II)(2)L(Et)(NCS)(4)]·MeOH·¾H(2)O (1·MeOH·¾H(2)O), [Fe(II)(2)L(Et)(NCSe)(4)]·H(2)O (2·H(2)O), [Fe(II)(2)L(Et)(NCBH(3))(4)]·(5/2)H(2)O (3·(5/2)H(2)O), [Fe(II)(2)L(Me)(NCS)(4)]·½H(2)O (4·½H(2)O), [Fe(II)(2)L(Me)(NCSe)(4)] (5), [Fe(II)(2)L(Me)(NCBH(3))(4)]·(3/2)H(2)O (6·(3/2)H(2)O), [Fe(II)(2)L(Mix)(NCS)(4)]·½H(2)O (7·½H(2)O), [Fe(II)(2)L(Mix)(NCSe)(4)]·(3/2)H(2)O (8·(3/2)H(2)O), and [Fe(II)(2)L(Mix)(NCBH(3))(4)]·(3/2)H(2)O (9·(3/2)H(2)O). Complexes 3·(5/2)H(2)O, 4·½H(2)O, 5, 6·(3/2)H(2)O, and 8·(3/2)H(2)O were structurally characterized by X-ray crystallography, revealing, in all cases, both of the iron(II) centers in an octahedral environment with two NCE (E = S, Se, or BH(3)) anions in a cis-position relative to one another. Variable temperature magnetic susceptibility measurements showed that all nine diiron(II) complexes are stabilized in the [HS-HS] state from 300 K to 4 K, and exhibit weak antiferromagnetic coupling.

View Article and Find Full Text PDF

A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·½MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres.

View Article and Find Full Text PDF

The first examples of trinuclear complexes of any dipyridyltriazole, [Fe(II)(3)(Rdpt)(4)(NCS)(6)], are, respectively: [HS-HS-HS] when Rdpt = phdpt and "[LS-HS-LS]" when Rdpt = ibdpt.

View Article and Find Full Text PDF

Molecular {Cr(7)Ni} rings have shown several ideal features for the observation of quantum phenomena and they appear suitable candidates for qubits encoding at low temperatures. We have exploited different functionalization pathways to graft molecular {Cr(7)Ni} rings onto a Au(111) surface from the liquid phase and here we report a comparative analysis of the results obtained by STM, XPS, XAS and XMCD experimental techniques.

View Article and Find Full Text PDF

The synthesis and magnetic properties of enneametallic and octametallic Fe(III) cage complexes from tetraazamacrocycle ligands (1,7-H2DO2A) and (H3DO3A) respectively, are reported.

View Article and Find Full Text PDF

"Tritopic" picolinic dihydrazone ligands with tridentate coordination pockets are designed to produce homoleptic [3 x 3] nonanuclear square grid complexes on reaction with transition-metal salts, and many structurally documented examples have been obtained with Mn(II), Cu(II), and Zn(II) ions. However, other oligomeric complexes with smaller nuclearities have also been discovered and identified structurally in some reactions involving Fe(II), Co(II), Ni(II), and Cu(II), with certain tritopic ligands. This illustrates the dynamic nature of the metal-ligand interaction and the conformationally flexible nature of the ligands and points to the possible involvement of some of these species as intermediates in the [3 x 3] grid formation process.

View Article and Find Full Text PDF

Tritopic 2,6-picolyl-bis-hydrazone ligands with bulky terminal groups derived from phenyl-pyridyl ketone do not form the expected [3 x 3] grids on reaction with copper(II), but instead form Cu8 'pinwheels', and in the present case linear trinuclear, pentanuclear and chain structures also. Direct bridging between copper ions occurs through micro2-N-N diazine groups, and longer O-C-N hydrazone connections, leading to moderately strong antiferromagnetic exchange between adjacent metal centres. Structural and magnetic properties are discussed in the context of specific orthogonal and non-orthogonal bridges, which can be distinguished and quantified.

View Article and Find Full Text PDF

Flat, quantum dot like arrays of closely spaced, electron rich metal centres are seen as attractive subunits for device capability at the molecular level. Mn(II)9 grids, formed by self-assembly processes using 'tritopic' pyridine-2,6-dihydrazone ligands, provide easy and pre-programmable routes to such systems, and have been shown to exhibit a number of potentially useful physical properties, which could be utilized to generate bi-stable molecular based states. Their ability to form surface monolayers, which can be mapped by STM techniques, bodes well for their possible integration into nanometer scale electronic components of the future.

View Article and Find Full Text PDF

A sterically encumbered 'tritopic' picolinic-dihydrazone ligand reacts with cobalt(ii) nitrate in air to give a dodecanuclear [Co(ii)(6)Co(iii)(6)] cluster, in which six ligands are hydrolyzed to mono-carboxylate analogues.

View Article and Find Full Text PDF

Polynuclear manganese(II), cobalt(II)/(III), iron(II)/(III) and nickel(II) complexes of a group of flexible polydentate dihydrazone ligands, based on pyridine-2,6-dipicolinic (A), oxalic (B) and malonic (C) subunits are described. Structural details are reported for the linear dinuclear complexes [Ni2(2poap)2(H2O)2](NO3)4 . 2CH3OH .

View Article and Find Full Text PDF

A series of [3 x 3] Mn(II)(9), antiferromagnetically coupled, alkoxide-bridged, square grid complexes, derived from a group of "tritopic" dihydrazide ligands, is described. The outer ring of eight Mn(II) centers in the grids is isolated magnetically from the central Mn(II) ion, leading to an S = 0 ground state for the ring, and an S = 5/2 ground state overall in each case. Exchange in the Mn(II)(8) ring can be represented by a 1D chain exchange model.

View Article and Find Full Text PDF

The structures and magnetic properties of self-assembled copper(II) clusters and grids with the "tritopic" ligands 2poap (a), Cl2poap (b), m2poap (c), Cl2pomp (d), and 2pomp (e) are described [ligands derived by reaction of 4-R-2,6-pyridinedicarboxylic hydrazide (R = H, Cl, MeO) with 2-pyridinemethylimidate (a-c, respectively) or 2-acetylpyridine (d, R = Cl; e, R = H)]. Cl2poap and Cl2pomp self-assemble with Cu(NO(3))(2) to form octanuclear "pinwheel" cluster complexes [Cu(8)(Cl2poap-2H)(4)(NO(3))(8)].20H(2)O (1) and [Cu(8)(Cl2pomp-2H)(4)(NO(3))(8)].

View Article and Find Full Text PDF

The nickel coordination chemistry of a series of polytopic diazine (N-N) based ligands has been examined. Self-assembly reactions lead to examples of dinuclear, trinuclear, tetranuclear, pentanuclear, and octanuclear complexes, all of which exhibit magnetic exchange coupling, with antiferromagnetic and ferromagnetic examples. Structural details are presented for [(L1)(2)Ni(2)(H(2)O)(2)](NO(3))(4).

View Article and Find Full Text PDF