Publications by authors named "Victoria A Church"

Large-scale, high-throughput specificity assays to characterize binding properties within a competitive and complex environment of potential binder-target pairs remain challenging and cost prohibitive. Barcode cycle sequencing (BCS) is a molecular binding assay for proteins, peptides, and other small molecules that is built on a next-generation sequencing (NGS) chip. BCS uses a binder library and targets labeled with unique DNA barcodes.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals.

View Article and Find Full Text PDF

We demonstrate early progress toward constructing a high-throughput, single-molecule protein sequencing technology utilizing barcoded DNA aptamers (binders) to recognize terminal amino acids of peptides (targets) tethered on a next-generation sequencing chip. DNA binders deposit unique, amino acid-identifying barcodes on the chip. The end goal is that, over multiple binding cycles, a sequential chain of DNA barcodes will identify the amino acid sequence of a peptide.

View Article and Find Full Text PDF

In this issue of Neuron, Amin et al. (2021) generate genetic tools to titrate down levels of miR-218, a motor neuron-enriched microRNA, in vivo. Varying miR-218 dose alters target selection, results in distinct dose-response curves reflecting 3' UTR features, and reveals a miR-218 threshold below which motor neuron deficits emerge.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), miR-9/9, and miR-124 (miR-9/9-124) display fate-reprogramming activities when ectopically expressed in human fibroblasts by erasing the fibroblast identity and evoking a pan-neuronal state. In contrast to induced pluripotent stem cell-derived neurons, miRNA-induced neurons (miNs) retain the biological age of the starting fibroblasts through direct fate conversion and thus provide a human neuron-based platform to study cellular properties inherent in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, expression of neuronal subtype-specific transcription factors in conjunction with miR-9/9-124 guides the miNs to distinct neuronal fates, a feature critical for modeling disorders that affect specific neuronal subtypes.

View Article and Find Full Text PDF

The cellular abundance of mature microRNAs (miRNAs) is dictated by the efficiency of nuclear processing of primary miRNA transcripts (pri-miRNAs) into pre-miRNA intermediates. The Microprocessor complex of Drosha and DGCR8 carries this out, but it has been unclear what controls Microprocessor's differential processing of various pri-miRNAs. Here, we show that Drosophila DGCR8 (Pasha) directly associates with the C-terminal domain of the RNA polymerase II elongation complex when it is phosphorylated by the Cdk9 kinase (pTEFb).

View Article and Find Full Text PDF