Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils.
View Article and Find Full Text PDFFusarium culmorum is one of the most important fungal plant pathogens that causes diseases on a wide diversity of cereal and non-cereal crops. We report herein for the first time the genome sequence of F. culmorum strain PV and its associated secondary metabolome that plays a role in the interaction with other microorganisms and contributes to its pathogenicity on plants.
View Article and Find Full Text PDFRecent studies indicated that the production of secondary metabolites by soil bacteria can be triggered by interspecific interactions. However, little is known to date about interspecific interactions between Gram-positive and Gram-negative bacteria. In this study, we aimed to understand how the interspecific interaction between the Gram-positive Paenibacillus sp.
View Article and Find Full Text PDFOngoing eutrophication frequently causes toxic phytoplankton blooms. This induces huge worldwide challenges for drinking water quality, food security and public health. Of crucial importance in avoiding and reducing blooms is to determine the maximum nutrient load ecosystems can absorb, while remaining in a good ecological state.
View Article and Find Full Text PDFThe ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum.
View Article and Find Full Text PDFDNA based microbial community profiling of food samples is confounded by the presence of DNA derived from membrane compromised (dead or injured) cells. Selective amplification of DNA from viable (intact) fraction of the community by propidium monoazide (PMA) treatment could circumvent this problem. Gouda cheese manufacturing is a proper model to evaluate the use of PMA for selective detection of intact cells since large fraction of membrane compromised cells emerges as a background in the cheese matrix during ripening.
View Article and Find Full Text PDFFor over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions.
View Article and Find Full Text PDFThere is increasing evidence that volatile organic compounds (VOCs) play an important role in the interactions between fungi and bacteria, two major groups of soil inhabiting microorganisms. Yet, most of the research has been focused on effects of bacterial volatiles on suppression of plant pathogenic fungi whereas little is known about the responses of bacteria to fungal volatiles. In the current study we performed a metabolomics analysis of volatiles emitted by several fungal and oomycetal soil strains under different nutrient conditions and growth stages.
View Article and Find Full Text PDFBackground: Collimonas is a genus belonging to the class of Betaproteobacteria and consists mostly of soil bacteria with the ability to exploit living fungi as food source (mycophagy). Collimonas strains differ in a range of activities, including swimming motility, quorum sensing, extracellular protease activity, siderophore production, and antimicrobial activities.
Results: In order to reveal ecological traits possibly related to Collimonas lifestyle and secondary metabolites production, we performed a comparative genomics analysis based on whole-genome sequencing of six strains representing 3 recognized species.
Background: Lysobacter species are Gram-negative bacteria widely distributed in soil, plant and freshwater habitats. Lysobacter owes its name to the lytic effects on other microorganisms. To better understand their ecology and interactions with other (micro)organisms, five Lysobacter strains representing the four species L.
View Article and Find Full Text PDFPlant necrotrophic Dickeya spp. are among the top ten most devastating bacterial plant pathogens able to infect a number of different plant species worldwide including economically important crops. Little is known of the lytic bacteriophages infecting Dickeya spp.
View Article and Find Full Text PDFPectinolytic Pectobacterium spp. and Dickeya spp. are necrotrophic bacterial pathogens of many important crops, including potato, worldwide.
View Article and Find Full Text PDFWe announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of genome content and synteny among collimonads.
View Article and Find Full Text PDFMaintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides.
View Article and Find Full Text PDFBackground: Mycobacterium tuberculosis is characterised by limited genomic diversity, which makes the application of whole genome sequencing particularly attractive for clinical and epidemiological investigation. However, in order to confidently infer transmission events, an accurate knowledge of the rate of change in the genome over relevant timescales is required.
Methods: We attempted to estimate a molecular clock by sequencing 199 isolates from epidemiologically linked tuberculosis cases, collected in the Netherlands spanning almost 16 years.
Here, we report the complete genome of Lactococcus lactis subsp. cremoris UC509.9, an Irish dairy starter.
View Article and Find Full Text PDFBacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources.
View Article and Find Full Text PDFObjective: Repeated injection of streptococcal cell wall (SCW) fragments results in chronic arthritis in mice. The objective of this study was to identify genes and pathways that determine disease progression based on gene expression profiling in this model.
Methods: Chronic arthritis was induced in mice by 4 injections of SCW fragments.
Background: In the current era of high throughput genomics a major challenge is the genome-wide identification of target genes for specific transcription factors. Chromatin immunoprecipitation (ChIP) allows the isolation of in vivo binding sites of transcription factors and provides a powerful tool for examining gene regulation. Crosslinked chromatin is immunoprecipitated with antibodies against specific transcription factors, thus enriching for sequences bound in vivo by these factors in the immunoprecipitated DNA.
View Article and Find Full Text PDFBackground: SRS (Sequence Retrieval System) has proven to be a valuable platform for storing, linking, and querying biological databases. Due to the availability of a broad range of different scientific databases in SRS, it has become a useful platform to incorporate and mine microarray data to facilitate the analyses of biological questions and non-hypothesis driven quests. Here we report various solutions and tools for integrating and mining annotated expression data in SRS.
View Article and Find Full Text PDF