Publications by authors named "Victor de Aguiar"

Sea ice is a key element of the global Earth system, with a major impact on global climate and regional weather. Unfortunately, accurate sea ice modeling is challenging due to the diversity and complexity of underlying physics happening there, and a relative lack of ground truth observations. This is especially true for the Marginal Ice Zone (MIZ), which is the area where sea ice is affected by incoming ocean waves.

View Article and Find Full Text PDF

The sea area around the Orkney archipelago, Scotland is subjected to substantial maritime shipping activities. By contract, the Svalbard archipelago, Norway currently has a rather low marine traffic profile. Future projections, however, indicate that the Trans-Arctic route might change the whole transportation picture and Svalbard may be at the centre of maritime activities.

View Article and Find Full Text PDF

Variability in sea ice conditions, combined with strong couplings to the atmosphere and the ocean, lead to a broad range of complex sea ice dynamics. More in-situ measurements are needed to better identify the phenomena and mechanisms that govern sea ice growth, drift, and breakup. To this end, we have gathered a dataset of in-situ observations of sea ice drift and waves in ice.

View Article and Find Full Text PDF

The ongoing reduction in extent and thickness of sea ice in the Arctic might result in an increase of oil spill risk due to the expansion of shipping activity and oil exploration shift towards higher latitudes. This work assessed the response of two oil-in-ice surface drift models implemented in an open-source Lagrangian framework. By considering two numerical modeling experiments, our main finding indicates that the drift models provide fairly similar outputs when forced by the same input.

View Article and Find Full Text PDF

Simulations over eight years of continuous surface oil spills around Cuba are carried out to identify the most likely stranding (beaching) locations. The open source Lagrangian oil drift model OpenOil is applied with high resolution hydrodynamic forcing. The actual fraction of the released oil mass reaching different regions is calculated, revealing small differences between a light and a heavy crude oil type.

View Article and Find Full Text PDF