Delayed luminescence involving charge-carrier trapping and detrapping has recently been identified as a widespread and possibly universal phenomenon in colloidal quantum dots. Its near-power-law decay suggests a relationship with blinking. Here, using colloidal CuInS and CdSe quantum dots as model systems, we show that short (nanosecond) excitation pulses yield less delayed luminescence intensity and faster delayed luminescence decay than observed with long (millisecond) square-wave excitation pulses.
View Article and Find Full Text PDF