The activity of Pt for the electro-oxidation of several organic molecules changes with the cation of the electrolyte. It has been proposed that the underlying reason behind that effect is the so-called noncovalent interactions between the hydrated cations and adsorbed OH (OH). However, there is a lack of spectroscopic evidence for this phenomenon, resulting in an incomplete understanding at the microscopic level of these electrochemical processes.
View Article and Find Full Text PDFPt-based bimetallic electrocatalysts are promising candidates to convert surplus glycerol from the biodiesel industry to value-added chemicals and coproduce hydrogen. It is expected that the nature and content of the elements in the bimetallic catalyst can not only affect the reaction kinetics but also influence the product selectivity, providing a way to increase the yield of the desired products. Hence, in this work, we investigate the electrochemical oxidation of glycerol on a series of PtNi nanoparticles with increasing Ni content using a combination of physicochemical structural analysis, electrochemical measurements, operando spectroscopic techniques, and advanced product characterizations.
View Article and Find Full Text PDF