Publications by authors named "Victor Y Timoshenko"

The acquisition of reliable knowledge about the mechanism of short laser pulse interactions with semiconductor materials is an important step for high-tech technologies towards the development of new electronic devices, the functionalization of material surfaces with predesigned optical properties, and the manufacturing of nanorobots (such as nanoparticles) for bio-medical applications. The laser-induced nanostructuring of semiconductors, however, is a complex phenomenon with several interplaying processes occurring on a wide spatial and temporal scale. In this work, we apply the atomistic-continuum approach for modeling the interaction of an fs-laser pulse with a semiconductor target, using monolithic crystalline silicon (c-Si) and porous silicon (Si).

View Article and Find Full Text PDF

The combination of photothermal and magnetic functionalities in one biocompatible nanoformulation forms an attractive basis for developing multifunctional agents for biomedical theranostics. Here, we report the fabrication of silicon-iron (Si-Fe) composite nanoparticles (NPs) for theranostic applications by using a method of femtosecond laser ablation in acetone from a mixed target combining silicon and iron. The NPs were then transferred to water for subsequent biological use.

View Article and Find Full Text PDF

Anti-Stokes photoluminescence (ASPL) is an up-conversion phonon-assisted process of radiative recombination of photoexcited charge carriers when the ASPL photon energy is above the excitation one. This process can be very efficient in nanocrystals (NCs) of metalorganic and inorganic semiconductors with perovskite (Pe) crystal structure. In this review, we present an analysis of the basic mechanisms of ASPL and discuss its efficiency depending on the size distribution and surface passivation of Pe-NCs as well as the optical excitation energy and temperature.

View Article and Find Full Text PDF

Anti-Stokes photoluminescence (ASPL), which is an up-conversion phonon-assisted process of the radiative recombination of photoexcited charge carriers, was investigated in methylammonium lead bromide (MALB) perovskite nanocrystals (NCs) with mean sizes that varied from about 6 to 120 nm. The structure properties of the MALB NCs were investigated by means of the scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. ASPL spectra of MALB NCs were measured under near-resonant laser excitation with a photon energy of 2.

View Article and Find Full Text PDF

Layers of germanium (Ge) nanowires (NWs) on titanium foils were grown by metal-assisted electrochemical reduction of germanium oxide in aqueous electrolytes based on germanium oxide without and with addition of sodium silicate. Structural properties and composition of Ge NWs were studied by means of the scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. When sodium silicate was added to the electrolyte, Ge NWs consisted of 1-2 at.

View Article and Find Full Text PDF

Due to particular physico-chemical characteristics and prominent optical properties, nanostructured germanium (Ge) appears as a promising material for biomedical applications, but its use in biological systems has been limited so far due to the difficulty of preparation of Ge nanostructures in a pure, uncontaminated state. Here, we explored the fabrication of Ge nanoparticles (NPs) using methods of pulsed laser ablation in ambient gas (He or He-N mixtures) maintained at low residual pressures (1-5 Torr). We show that the ablated material can be deposited on a substrate (silicon wafer in our case) to form a nanostructured thin film, which can then be ground in ethanol by ultrasound to form a stable suspension of Ge NPs.

View Article and Find Full Text PDF

Erbium upconversion (UC) photoluminescence (PL) from sol-gel derived barium titanate (BaTiO:Er) xerogel structures fabricated on silicon, glass or fused silica substrates has been studied. Under continuous-wave excitation at 980 nm and nanosecond pulsed excitation at 980 and 1540 nm, the fabricated structures demonstrate room temperature PL with several bands at 410, 523, 546, 658, 800 and 830 nm, corresponding to the H → I, H → I, S → I, F→ I and I→ I transitions of Er ions. The intensity of erbium UC PL increases when an additional macroporous layer of strontium titanate is used beneath the BaTiO xerogel layer.

View Article and Find Full Text PDF

Silicon nanowires (SiNWs) prepared by metal-assisted chemical etching of crystalline silicon wafers followed by deposition of plasmonic gold (Au) nanoparticles (NPs) were explored as templates for surface-enhanced Raman scattering (SERS) from probe molecules of Methylene blue and Rhodamine B. The filling factor by pores (porosity) of SiNW arrays was found to control the SERS efficiency, and the maximal enhancement was observed for the samples with porosity of 55%, which corresponded to dense arrays of SiNWs. The obtained results are discussed in terms of the electromagnetic enhancement of SERS related to the localized surface plasmon resonances in Au-NPs on SiNW's surfaces accompanied with light scattering in the SiNW arrays.

View Article and Find Full Text PDF

Using methods of pulsed laser ablation from a silicon target in helium (He)-nitrogen (N) gas mixtures maintained at reduced pressures (0.5-5 Torr), we fabricated substrate-supported silicon (Si) nanocrystal-based films exhibiting a strong photoluminescence (PL) emission, which depended on the He/N ratio. We show that, in the case of ablation in pure He gas, Si nanocrystals exhibit PL bands centered in the "red - near infrared" (maximum at 760 nm) and "green" (centered at 550 nm) spectral regions, which can be attributed to quantum-confined excitonic states in small Si nanocrystals and to local electronic states in amorphous silicon suboxide (a-SiO) coating, respectively, while the addition of N leads to the generation of an intense "green-yellow" PL band centered at 580 nm.

View Article and Find Full Text PDF

We employ a method of femtosecond laser fragmentation of preliminarily prepared water-dispersed microcolloids to fabricate aqueous solutions of ultrapure bare Si-based nanoparticles (Si-NPs) and assess their potential for biomedical applications. The nanoparticles appear spherical in shape, with low size dispersion and a controllable mean size, from a few nm to several tens of nm, while a negative surface charge (-35 mV ± 0.10 according to z-potential data) provides good electrostatic stabilization of colloidal Si-NP solutions.

View Article and Find Full Text PDF

Halloysite nanotubes (HNTs) with immobilized silver (Ag) nanoparticles (NPs) were prepared by methods of wet chemistry and were characterized by using the transmission electron microscopy, x-ray diffraction, optical spectroscopy and experiments with E. coli bacteria in-vitro. It was found that Ag NPs with almost perfect crystalline structure and sizes from ∼9nm were mainly attached over the external surface of HNTs.

View Article and Find Full Text PDF

New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10-40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy.

View Article and Find Full Text PDF

In-vitro Raman micro-spectroscopy was used for diagnostics of the processes of uptake and biodegradation of porous silicon nanoparticles (SiNPs) in breast cancer cells (MCF-7 cell line). Two types of nanoparticles, with and without photoluminescence in the visible spectral range, were investigated. The spatial distribution of photoluminescent SiNPs within the cells obtained by Raman imaging was verified by high-resolution structured-illumination optical microscopy.

View Article and Find Full Text PDF

The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen-bonded homopolymers from a family of poly[4-(n-acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol-containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix.

View Article and Find Full Text PDF

Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50 °C under relatively low nanoparticle concentrations (<1 mg/mL) and RF radiation intensities (1-5 W/cm(2)).

View Article and Find Full Text PDF

Evaluation of cytotoxicity, photoluminescence, bio-imaging, and sonosensitizing properties of silicon nanoparticles (SiNPs) prepared by ultrasound grinding of porous silicon nanowires (SiNWs) have been investigated. SiNWs were formed by metal (silver)-assisted wet chemical etching of heavily boron-doped (100)-oriented single crystalline silicon wafers. The prepared SiNWs and aqueous suspensions of SiNPs exhibit efficient room temperature photoluminescence (PL) in the spectral region of 600 to 1,000 nm that is explained by the radiative recombination of excitons confined in small silicon nanocrystals, from which SiNWs and SiNPs consist of.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a quick way to make super clean tiny particles from silicon using a special laser method.
  • The technique helps create tiny particles that are the same size and don't clump together by controlling the water and other materials used.
  • These clean particles could be really useful in medicine for things like delivering drugs or taking pictures inside the body.
View Article and Find Full Text PDF

We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1-25 μm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.

View Article and Find Full Text PDF

A significant enhancement of the photoluminescence (PL) efficiency is observed for aqueous suspensions of porous silicon nanoparticles (PSiNPs) coated by bioresorbable polymers, i.e., polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA).

View Article and Find Full Text PDF

Silicon nanoparticles (SiNPs) obtained by mechanical grinding of porous silicon have been used for visualization of living cells in vitro. It was found that SiNPs could penetrate into the cells without any cytotoxic effect up to the concentration of 100 μg/ml. The cell cytoplasm was observed to be filled by SiNPs, which exhibited bright photoluminescence at 1.

View Article and Find Full Text PDF

Films of nanocrystalline silicon (nc-Si) were prepared from hydrogenated amorphous silicon (a-Si:H) by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films.

View Article and Find Full Text PDF

Anisotropic photonic crystal structures consisting of birefringent porous silicon layers with alternating porosity were fabricated. The in-plane birefringence formed as a result of anisotropic etching in Si(110) results in unique multilayered structures with two distinct photonic bandgaps for orthogonal light polarizations. Nonlinear optical studies based on the third-harmonic generation from these structures demonstrate variation in the symmetry of the nonlinear optical response.

View Article and Find Full Text PDF

The effect of gaseous and liquid nitrogen dioxide on the composition and electronic properties of porous silicon (PS) is investigated by means of optical spectroscopy and electron paramagnetic resonance. It is detected that the interaction process is weak and strong forms of chemisorption on the PS surface, and the process may be regarded as an actual chemical reaction between PS and NO(2). It is found that NO(2) adsorption consists in forming different surface nitrogen-containing molecular groups and dangling bonds of Si atoms (P(b)-centers) as well as in oxidizing and hydrating the PS surface.

View Article and Find Full Text PDF