In recent studies, neuroanatomical volume and shape asymmetries have been seen during the course of Alzheimer's Disease (AD) and could potentially be used as preclinical imaging biomarkers for the prediction of Mild Cognitive Impairment (MCI) and AD dementia. In this study, a deep learning framework utilizing Siamese neural networks trained on paired lateral inter-hemispheric regions is used to harness the discriminative power of whole-brain volumetric asymmetry. The method uses the MRICloud pipeline to yield low-dimensional volumetric features of pre-defined atlas brain structures, and a novel non-linear kernel trick to normalize these features to reduce batch effects across datasets and populations.
View Article and Find Full Text PDF