Publications by authors named "Victor Vinoth"

Glutathione (GSH) is the most abundant antioxidant in the majority of cells and tissues; and its use as a biomarker has been known for decades. In this study, a facile electrochemical method was developed for glutathione sensing using voltammetry and amperometry analyses. In this study, a novel glassy carbon electrode composed of graphene quantum dots (GQDs) embedded on amine-functionalized silica nanoparticles (SiNPs) was synthesized.

View Article and Find Full Text PDF
Article Synopsis
  • The rising need for diabetes diagnosis has led to the creation of advanced glucose sensing technologies, particularly non-enzymatic sensors.
  • Researchers developed polyvinylpyrrolidone (PVP)-conjugated bimetallic Pt-Pd nanosuperlattices (BMNSLs) through a simple method, achieving precise and controlled nanostructures in the size range of 3-5 nm.
  • The Pt-Pd BMNSLs showed effective selective detection of glucose in various substances and demonstrated promising results for real serum and urine analyses, indicating their potential for low-cost non-enzymatic glucose sensors.
View Article and Find Full Text PDF

Gold nanocrystals (AuNCs) were synthesized by economical and green strategy in aqueous medium by using N[3(trimethoxysilyl)propyl]ethylenediamine (TMSPED) as both a reducing and stabilizing mediator to avoid the aggregation of gold nanocrystals. Then, the AuNCs were capped with graphene quantum dots (GQDs) using an ultrasonic method. The resulting nanocomposites of GQD-TMSPED-AuNCs were characterized by X-ray photoelectron, X-ray diffraction, Raman, UV-vis and FT-IR spectroscopies.

View Article and Find Full Text PDF

CuO@TiO heterojunction nanocomposites were prepared via ultrasonic method towards the removal of the environmental pollutant of MO by the visible light photocatalytic approach. The structure of prepared CuO@TiO heterojunction nanocomposites was analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, photoluminescence spectroscopy, UV-Visible absorption spectroscopy, diffused reflectance spectroscopy. The photocatalytic degradation ability was tested using methyl orange as a model pollutant.

View Article and Find Full Text PDF

Developed here an eco-friendly, one-pot approach toward rapid synthesis of silver nanoparticles anchored reduced graphene oxide (AgNPs-rGO) nanosheets via sonochemical irradiation method, using an aqueous solution mixture of GO and AgNO in the presence of N-[3(trimethoxysilyl)propyl] ethylenediamine (TMSPED) without any reducing agent. As synthesized decorated nanosheets was thoroughly characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Pristine AgNPs, pristine rGO and as prepared AgNPs-rGO materials were employed to modify the glassy carbon (GC) electrode and demonstrated its excellent electrocatalytic activities towards glutathione (GSH).

View Article and Find Full Text PDF

Multiwalled carbon nanotubes (MWCNTs) and Vulcan carbon (VC) decorated with SnO2 nanoparticles were synthesized using a facile and versatile sonochemical procedure. The as-prepared nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infra red spectroscopy. It was evidenced that SnO2 nanoparticles were uniformly distributed on both carbon surfaces, tightly decorating the MWCNTs and VC.

View Article and Find Full Text PDF