Clinical implementation of in-beam PET monitoring in proton therapy requires the integration of an online fast and reliable dose calculation engine. This manuscript reports on the achievement of real-time reconstruction of 3D dose and activity maps with proton range verification from experimental in-beam PET measurements. Approach: Several cylindrical homogeneous PMMA phantoms were irradiated with a monoenergetic 70-MeV proton beam in a clinical facility.
View Article and Find Full Text PDFRadionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.
View Article and Find Full Text PDFProton therapy allows the treatment of specific areas and avoids the surrounding tissues. However, this technique has uncertainties in terms of the distal dose fall-off. A promising approach to studying the proton range is the use of nanoparticles as proton-activatable agents that produce detectable signals.
View Article and Find Full Text PDFBackground: Recent proposals of high dose rate plans in protontherapy as well as very short proton bunches may pose problems to current beam monitor systems. There is an increasing demand for real-time proton beam monitoring with high temporal resolution, extended dynamic range and radiation hardness. Plastic scintillators coupled to optical fiber sensors have great potential in this context to become a practical solution towards clinical implementation.
View Article and Find Full Text PDF