The oxazole and pyrimidine rings are widely displayed in natural products and synthetic molecules. They are known as the prime skeletons for drug discovery. On the account of structural and chemical diversity, oxazole and pyrimidine-based molecules, as central scaffolds, not only provide different types of interactions with various receptors and enzymes, showing broad biological activities, but also occupy a core position in medicinal chemistry, showing their importance for development and discovery of newer potential therapeutic agents (Curr Top Med Chem, 16, 2016, 3133; Int J Pharm Pharm Sci, 8, 2016, 8; BMC Chem, 13, 2019, 44).
View Article and Find Full Text PDFPurpose: To investigate the effects of the imposed low dose rate ionizing field on membrane stability of human erythrocytes under modulation of transmembrane exchange of Ca(2+).
Materials And Methods: Osmotic resistance of human erythrocytes was determined by a measure of haemoglobin released from erythrocytes when placed in a medium containing serial dilutions of Krebs isotonic buffer. The zeta potential as indicator of surface membrane potential was calculated from value of the cellular electrophoretic mobility.
This paper is intended to provide an expository, physics-based, framework for the estimation of the performance potential and physical scaling limits of resistive memory. The approach taken seeks to provide physical insights into those parameters and physical effects that define device performance and scaling properties. The mechanisms of resistive switching are based on atomic rearrangements in a material.
View Article and Find Full Text PDFPurpose: To determine the effects of ultra-low dose beta-radiation (ULDBR) on the physical properties of human erythrocyte membranes.
Materials And Methods: To study the structural changes induced by beta-radiation in erythrocyte ghosts, the interactions of fluorescent probes (1-anilino-8-naphthalene sulfonate, pyrene) with the erythrocyte membranes were investigated. The fluorescent responses to the ULDBR were registered after the addition of (14)C-leucine (37-3700 kBq(l(-1)) in the cellular suspension.
Int J Radiat Biol
November 2005
Purpose: To investigate the action of ultra-low dose beta-radiation (ULDBR) on isolated segments of blood vessels.
Materials And Methods: We used the pharmacological model of isolated rabbit carotid arteries with intact or mechanically removed endothelium. Specific vascular responses to beta-irradiation were registered after addition of (90)Sr in the concentration range between 12 and 96 microCi l(-1) to the organ bath containing physiological salt solution (PSS).