The ability of light to manipulate fundamental interactions in a medium is central to research in optomagnetism and applications in electronics. A prospective approach is to create composite quasiparticles, magnetic polarons, highly susceptible to external stimuli. To control magnetic and transport properties by weak magnetic and electric fields, it is important to find materials that support photoinduced magnetic polarons with colossal net magnetic moments.
View Article and Find Full Text PDFLight-induced magnetization response unfolding on a temporal scale down to femtoseconds presents a way to convey information spin manipulation. The advancement of the field requires exploration of new materials implementing various mechanisms for ultrafast magnetization dynamics. Here, pump-probe measurements of EuO-based ferromagnets by a time-resolved two-colour stroboscopic technique are reported.
View Article and Find Full Text PDFThe optical properties of colloidal semiconductor nanocrystals are largely influenced by the trapping of charge carriers on the nanocrystal surface. Different concentrations of electron and hole traps and different rates of their capture to the traps provide dynamical charging of otherwise neutral nanocrystals. We study the photocharging formation and evolution dynamics in CdS colloidal quantum dots with native oleic acid surface ligands.
View Article and Find Full Text PDF