Plastid-encoded RNA polymerase (PEP) forms a multisubunit complex in operating chloroplasts, where PEP subunits and a sigma factor are tightly associated with 12 additional nuclear-encoded proteins. Mutants with disrupted genes encoding PEP-associated proteins (PAPs) provide unique tools for deciphering mutual relationships among phytohormones. A block of chloroplast biogenesis in mutants specifying highly altered metabolism in white tissues induced dramatic fluctuations in the content of major phytohormones and their metabolic genes, whereas hormone signaling circuits mostly remained functional.
View Article and Find Full Text PDFThe coordination of activities between nuclei and organelles in plant cells involves information exchange, in which phytohormones may play essential roles. Therefore, the dissection of the mechanisms of hormone-related integration between phytohormones and mitochondria is an important and challenging task. Here, we found that inputs from multiple hormones may cause changes in the transcript accumulation of mitochondrial-encoded genes and nuclear genes encoding mitochondrial (mt) proteins.
View Article and Find Full Text PDFEukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out to be arranged in the same way. Pigment-protein complexes of photosystem I (PS I) and photosystem II (PS II) are characterized by uniform structures, while the light-harvesting antennae have undergone a series of changes.
View Article and Find Full Text PDFFine-tuned interactions between melatonin (MT) and hormones affected by environmental inputs are crucial for plant growth. Under high light (HL) conditions, melatonin reduced photodamage in and contributed to the restoration of the expression of the cytokinin (CK) synthesis genes , and and genes for CK signal transduction , and , , and which were downregulated by stress. However, CK signaling mutants displayed no significant changes in the expression of CK genes following HL + MT treatment, implying that a fully functional cytokinin signaling pathway is a prerequisite for MT-CK interactions.
View Article and Find Full Text PDFThe warming is global problem. In natural environments, heat stress is usually accompanied by drought. Under drought conditions, water content decreases in both soil and air; yet,the effect of lower air humidity remains obscure.
View Article and Find Full Text PDFChloroplasts' mechanisms of adaptation to elevated temperatures are largely determined by the gene expression of the plastid transcription apparatus. Gene disruption of iron-containing superoxide dismutase PAP4/FSD3 and PAP9/FSD2, which are parts of the DNA-RNA polymerase complex of plastids, contributed to a decrease in resistance to oxidative stress caused by the prolonged action of elevated temperatures (5 days, 30 °C). Under heat stress conditions, pap4/fsd3 and pap9/fsd2 mutants showed a decline in chlorophyll content and photosynthesis level, as measured by photosynthetic parameters, and a different amplitude of HSP gene response to heat stress.
View Article and Find Full Text PDFCytokinins (CKs) are known to regulate the biogenesis of chloroplasts under changing environmental conditions and at different stages of plant ontogenesis. However, the underlying mechanisms are still poorly understood. Apparently, the mechanisms can be duplicated in several ways, including the influence of nuclear genes that determine the expression of plastome through the two-component CK regulatory circuit.
View Article and Find Full Text PDFCd, Cu, and Fe were used to reveal the specificity of their toxic actions. We studied the effects of heavy metals on the growth of barley seedlings, contents of cations in leaves and chloroplasts, induced chlorophyll fluorescence and P light absorption. Differences were found at each level of research.
View Article and Find Full Text PDFPlant growth and photosynthetic activity are usually inhibited due to the overall action of Cd on a whole organism, though few cadmium cations can invade chloroplasts in vivo. We found that in vivo, the major portion of Cd in barley chloroplasts is located in the thylakoids (80%), and the minor portion is in the stroma (20%). Therefore, the electron-transport chain in the thylakoids would be the likely target for direct Cd action in vivo.
View Article and Find Full Text PDFHeat shock is one of the major abiotic factors that causes severe retardation in plant growth and development. To dissect the principal effects of hyperthermia on chloroplast gene expression, we studied the temporal dynamics of transcript accumulation for chloroplast-encoded genes in Arabidopsis thaliana and genes for the chloroplast transcription machinery against a background of changes in physiological parameters. A marked reduction in the transcript amounts of the majority of the genes at the early phases of heat shock (HS) was followed by a return to the baseline levels of rbcL and the housekeeping genes clpP, accD, rps14 and rrn16.
View Article and Find Full Text PDFPlant Mol Biol
March 2017
Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence.
View Article and Find Full Text PDFIn order to evaluate whether brassinosteroids (BS) and green light regulate the transcription of plastid genes in a cross-talk with cytokinins (CKs), transcription rates of 12 plastid genes (ndhF, rrn23, rpoB, psaA, psaB, rrn16, psbA, psbD, psbK, rbcL, atpB, and trnE/trnY) as well as the accumulation of transcripts of some photoreceptors (PHYA, CRY2, CRY1A, and CRY1B) and signaling (SERK and CAS) genes were followed in detached etiolated barley leaves exposed to darkness, green or white light ±1μm 24-epibrassinolide (EBL). EBL in the dark was shown to up-regulate the transcription of 12 plastid genes, while green light activated 10 genes and the EBL combined with the green light affected the transcription of only two genes (psaB and rpoB). Green light inhibited the expression of photoreceptor genes, except for CRY1A.
View Article and Find Full Text PDFPlastid genes are transcribed by two types of RNA polymerase in angiosperms: the bacterial type plastid-encoded RNA polymerase (PEP) and one (RPOTp in monocots) or two (RPOTp and RPOTmp in dicots) nuclear-encoded RNA polymerase(s) (NEP). PEP is a bacterial-type multisubunit enzyme composed of core subunits (coded for by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes) and additional protein factors (sigma factors and polymerase associated protein, PAPs) encoded in the nuclear genome. Sigma factors are required by PEP for promoter recognition.
View Article and Find Full Text PDFData on cadmium accumulation in chloroplasts of terrestrial plants are scarce and contradictory. We introduced CdSO4 in hydroponic media to the final concentrations 80 and 250 μM and studied the accumulation of Cd in chloroplasts of Hordeum vulgare and Zea mays. Barley accumulated more Cd in the chloroplasts as compared to maize, whereas in the leaves cadmium accumulation was higher in maize.
View Article and Find Full Text PDFNumerous studies have shown effects of abscisic acid (ABA) on nuclear genes encoding chloroplast-localized proteins. ABA effects on the transcription of chloroplast genes, however, have not been investigated yet thoroughly. This work, therefore, studied the effects of ABA (75 μM) on transcription and steady-state levels of transcripts in chloroplasts of basal and apical segments of primary leaves of barley (Hordeum vulgare L.
View Article and Find Full Text PDFTranscriptional activity of entire genes in chloroplasts is usually assayed by run-on analyses. To determine not only the overall intensity of transcription of a gene, but also the rate of transcription from a particular promoter, we created the Reverse RNase Protection Assay (RePro): in-organello run-on transcription coupled to RNase protection to define distinct transcript ends during transcription. We demonstrate successful application of RePro in plastid promoter analysis and transcript 3' end processing.
View Article and Find Full Text PDFCytokinins regulate chloroplast differentiation and functioning, but their targets in plastids are not known. In this connection, the plastid localization of the 70 kDa cytokinin-binding protein (CBP70) was studied immunocytochemically in 4-d-old etiolated maize seedlings (Zea mays L., cv.
View Article and Find Full Text PDFChloroplasts are among the main targets of cytokinin action in the plant cell. We report here on the activation of transcription by cytokinin as detected by run-on assays with chloroplasts isolated from apical parts of first leaves detached from 9-d-old barley (Hordeum vulgare) seedlings and incubated for 3 h on a 2.2 x 10(-5) m solution of benzyladenine (BA).
View Article and Find Full Text PDFThe distribution pattern of a 70 kDa cytokinin-binding protein (CBP70) was studied in 4-d-old etiolated maize seedlings (Zea mays L., cv. Elbrus).
View Article and Find Full Text PDF