The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.
View Article and Find Full Text PDFThe amino acid sequence determines the individual protein three-dimensional structure and its functioning in an organism. Therefore, "reading" a protein sequence and determining its changes due to mutations or post-translational modifications is one of the objectives of proteomic experiments. The commonly utilized approach is gradient high-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry.
View Article and Find Full Text PDFAn approach to sequence-dependent retention time prediction of peptides based on the concept of liquid chromatography at critical conditions (LCCC) is presented. Within the LCCC approach applied to biopolymers (BioLCCC), the specific retention time corresponds to a particular sequence. In combination with mass spectrometry, this approach provides an efficient tool to solve problems wherein the protein sequencing is essential.
View Article and Find Full Text PDF