Publications by authors named "Victor Timoshenko"

The acquisition of reliable knowledge about the mechanism of short laser pulse interactions with semiconductor materials is an important step for high-tech technologies towards the development of new electronic devices, the functionalization of material surfaces with predesigned optical properties, and the manufacturing of nanorobots (such as nanoparticles) for bio-medical applications. The laser-induced nanostructuring of semiconductors, however, is a complex phenomenon with several interplaying processes occurring on a wide spatial and temporal scale. In this work, we apply the atomistic-continuum approach for modeling the interaction of an fs-laser pulse with a semiconductor target, using monolithic crystalline silicon (c-Si) and porous silicon (Si).

View Article and Find Full Text PDF

The combination of photothermal and magnetic functionalities in one biocompatible nanoformulation forms an attractive basis for developing multifunctional agents for biomedical theranostics. Here, we report the fabrication of silicon-iron (Si-Fe) composite nanoparticles (NPs) for theranostic applications by using a method of femtosecond laser ablation in acetone from a mixed target combining silicon and iron. The NPs were then transferred to water for subsequent biological use.

View Article and Find Full Text PDF

Anti-Stokes photoluminescence (ASPL) is an up-conversion phonon-assisted process of radiative recombination of photoexcited charge carriers when the ASPL photon energy is above the excitation one. This process can be very efficient in nanocrystals (NCs) of metalorganic and inorganic semiconductors with perovskite (Pe) crystal structure. In this review, we present an analysis of the basic mechanisms of ASPL and discuss its efficiency depending on the size distribution and surface passivation of Pe-NCs as well as the optical excitation energy and temperature.

View Article and Find Full Text PDF

As-prepared mesoporous silicon nanoparticles, which were synthesized by electrochemical etching of crystalline silicon wafers followed by high-energy milling in water, were explored as a sonosensitizer in aqueous media under irradiation with low-intensity ultrasound at 0.88 MHz. Due to the mixed oxide-hydride coating of the nanoparticles' surfaces, they showed both acceptable colloidal stability and sonosensitization of the acoustic cavitation.

View Article and Find Full Text PDF

Anti-Stokes photoluminescence (ASPL), which is an up-conversion phonon-assisted process of the radiative recombination of photoexcited charge carriers, was investigated in methylammonium lead bromide (MALB) perovskite nanocrystals (NCs) with mean sizes that varied from about 6 to 120 nm. The structure properties of the MALB NCs were investigated by means of the scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. ASPL spectra of MALB NCs were measured under near-resonant laser excitation with a photon energy of 2.

View Article and Find Full Text PDF

Layers of germanium (Ge) nanowires (NWs) on titanium foils were grown by metal-assisted electrochemical reduction of germanium oxide in aqueous electrolytes based on germanium oxide without and with addition of sodium silicate. Structural properties and composition of Ge NWs were studied by means of the scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. When sodium silicate was added to the electrolyte, Ge NWs consisted of 1-2 at.

View Article and Find Full Text PDF

Due to particular physico-chemical characteristics and prominent optical properties, nanostructured germanium (Ge) appears as a promising material for biomedical applications, but its use in biological systems has been limited so far due to the difficulty of preparation of Ge nanostructures in a pure, uncontaminated state. Here, we explored the fabrication of Ge nanoparticles (NPs) using methods of pulsed laser ablation in ambient gas (He or He-N mixtures) maintained at low residual pressures (1-5 Torr). We show that the ablated material can be deposited on a substrate (silicon wafer in our case) to form a nanostructured thin film, which can then be ground in ethanol by ultrasound to form a stable suspension of Ge NPs.

View Article and Find Full Text PDF

Erbium upconversion (UC) photoluminescence (PL) from sol-gel derived barium titanate (BaTiO:Er) xerogel structures fabricated on silicon, glass or fused silica substrates has been studied. Under continuous-wave excitation at 980 nm and nanosecond pulsed excitation at 980 and 1540 nm, the fabricated structures demonstrate room temperature PL with several bands at 410, 523, 546, 658, 800 and 830 nm, corresponding to the H → I, H → I, S → I, F→ I and I→ I transitions of Er ions. The intensity of erbium UC PL increases when an additional macroporous layer of strontium titanate is used beneath the BaTiO xerogel layer.

View Article and Find Full Text PDF

Silicon nanowires (SiNWs) prepared by metal-assisted chemical etching of crystalline silicon wafers followed by deposition of plasmonic gold (Au) nanoparticles (NPs) were explored as templates for surface-enhanced Raman scattering (SERS) from probe molecules of Methylene blue and Rhodamine B. The filling factor by pores (porosity) of SiNW arrays was found to control the SERS efficiency, and the maximal enhancement was observed for the samples with porosity of 55%, which corresponded to dense arrays of SiNWs. The obtained results are discussed in terms of the electromagnetic enhancement of SERS related to the localized surface plasmon resonances in Au-NPs on SiNW's surfaces accompanied with light scattering in the SiNW arrays.

View Article and Find Full Text PDF

Using methods of pulsed laser ablation from a silicon target in helium (He)-nitrogen (N) gas mixtures maintained at reduced pressures (0.5-5 Torr), we fabricated substrate-supported silicon (Si) nanocrystal-based films exhibiting a strong photoluminescence (PL) emission, which depended on the He/N ratio. We show that, in the case of ablation in pure He gas, Si nanocrystals exhibit PL bands centered in the "red - near infrared" (maximum at 760 nm) and "green" (centered at 550 nm) spectral regions, which can be attributed to quantum-confined excitonic states in small Si nanocrystals and to local electronic states in amorphous silicon suboxide (a-SiO) coating, respectively, while the addition of N leads to the generation of an intense "green-yellow" PL band centered at 580 nm.

View Article and Find Full Text PDF

The presence of nanoparticles lowers the levels of ultrasound (US) intensity needed to achieve the therapeutic effect and improves the contrast between healthy and pathological tissues. Here, we evaluate the role of two main mechanisms that contribute to the US-induced heating of aqueous suspensions of biodegradable nanoparticles (NPs) of mesoporous silicon prepared by electrochemical etching of heavily boron-doped crystalline silicon wafers in a hydrofluoric acid solution. The first mechanism is associated with an increase of the attenuation of US in the presence of NPs due to additional scattering and viscous dissipation, which was numerically simulated and compared to the experimental data.

View Article and Find Full Text PDF

The current contrast agents utilized in ultrasound (US) imaging are based on microbubbles which suffer from a short lifetime in systemic circulation. The present study introduces a new type of contrast agent for US imaging based on bioresorbable Janus nanoparticles (NPs) that are able to generate microbubbles in situ under US radiation for extended time. The Janus NPs are based on porous silicon (PSi) that was modified via a nanostopper technique.

View Article and Find Full Text PDF

The development of suitable contrast agents can significantly enhance the efficiency of modern imaging and treatment techniques, such as thermoacoustic (TA) tomography and radio-frequency (RF) hyperthermia of cancer. Here, we examine the heating of aqueous suspensions of silicon (Si) and gold (Au) nanoparticles (NPs) under RF irradiation in the MHz frequency range. The heating rate of aqueous suspensions of Si NPs exhibited non-monotonic dependency on the electrical conductivity of the suspension.

View Article and Find Full Text PDF

We employ a method of femtosecond laser fragmentation of preliminarily prepared water-dispersed microcolloids to fabricate aqueous solutions of ultrapure bare Si-based nanoparticles (Si-NPs) and assess their potential for biomedical applications. The nanoparticles appear spherical in shape, with low size dispersion and a controllable mean size, from a few nm to several tens of nm, while a negative surface charge (-35 mV ± 0.10 according to z-potential data) provides good electrostatic stabilization of colloidal Si-NP solutions.

View Article and Find Full Text PDF

Halloysite nanotubes (HNTs) with immobilized silver (Ag) nanoparticles (NPs) were prepared by methods of wet chemistry and were characterized by using the transmission electron microscopy, x-ray diffraction, optical spectroscopy and experiments with E. coli bacteria in-vitro. It was found that Ag NPs with almost perfect crystalline structure and sizes from ∼9nm were mainly attached over the external surface of HNTs.

View Article and Find Full Text PDF

Unlabelled: One critical functionality of the carrier system utilized in targeted drug delivery is its ability to trigger the release of the therapeutic cargo once the carrier has reached its target. External triggering is an alluring approach as it can be applied in a precise spatiotemporal manner. In the present study, we achieved external triggering through the porous silicon (PSi) nanoparticles (NPs) by providing a pulse of infrared or radiofrequency radiation.

View Article and Find Full Text PDF

New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10-40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy.

View Article and Find Full Text PDF

In-vitro Raman micro-spectroscopy was used for diagnostics of the processes of uptake and biodegradation of porous silicon nanoparticles (SiNPs) in breast cancer cells (MCF-7 cell line). Two types of nanoparticles, with and without photoluminescence in the visible spectral range, were investigated. The spatial distribution of photoluminescent SiNPs within the cells obtained by Raman imaging was verified by high-resolution structured-illumination optical microscopy.

View Article and Find Full Text PDF

A series of new tetranuclear heterometallic Zn(II) -Eu(III) complexes have been synthesized, that is, (bpy)2 Zn2Eu2 (naph)10 (1), (bpy)2 Zn2Eu2 (naph)8 (NO3)2 (2), and (phen)2 Zn2Eu2 (naph)8 (NO3)2 (3), and other ones, where naph(-) is the 1-naphthoate anion, bpy=2,2'-bipyridyl, and phen=1,10-phenanthroline. The solid-phase complexes consist of large supramolecular ensembles due to stacking interactions between the aromatic ligands. Photoluminescence (PL) measurements were carried out to study PL spectra, lifetimes and quantum yields (QY) of the synthesized complexes at different temperatures.

View Article and Find Full Text PDF

Carbon fluoroxide (CFO) nanoparticles (NPs) produced from silicon carbide wafers are used as both fluorescent probes and sonosensitizers for theranostic application. cell tests were carried out to investigate the feasibility of ultrasound-based therapy with the use of the CFO NPs. The NPs that penetrated inside the cells were shown to provoke cell destruction after application of an ultrasound treatment.

View Article and Find Full Text PDF

The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen-bonded homopolymers from a family of poly[4-(n-acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol-containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix.

View Article and Find Full Text PDF

Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50 °C under relatively low nanoparticle concentrations (<1 mg/mL) and RF radiation intensities (1-5 W/cm(2)).

View Article and Find Full Text PDF

Evaluation of cytotoxicity, photoluminescence, bio-imaging, and sonosensitizing properties of silicon nanoparticles (SiNPs) prepared by ultrasound grinding of porous silicon nanowires (SiNWs) have been investigated. SiNWs were formed by metal (silver)-assisted wet chemical etching of heavily boron-doped (100)-oriented single crystalline silicon wafers. The prepared SiNWs and aqueous suspensions of SiNPs exhibit efficient room temperature photoluminescence (PL) in the spectral region of 600 to 1,000 nm that is explained by the radiative recombination of excitons confined in small silicon nanocrystals, from which SiNWs and SiNPs consist of.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a quick way to make super clean tiny particles from silicon using a special laser method.
  • The technique helps create tiny particles that are the same size and don't clump together by controlling the water and other materials used.
  • These clean particles could be really useful in medicine for things like delivering drugs or taking pictures inside the body.
View Article and Find Full Text PDF