Publications by authors named "Victor T Lin"

Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers and demands effective targeted therapeutic strategies. In this meta-analysis study, we aim to identify significantly mutated genes and regulatory pathways to help us better understand the progression of SCLC and to identify potential biomarkers. Besides ranking genes based on their mutation frequencies, we sought to identify statistically significant mutations in SCLC with the MutSigCV software.

View Article and Find Full Text PDF

The elevated lysophosphatidic acid signaling has been causally linked to cancer-associated inflammation and tumorigenesis through upregulation of nuclear factor-κB signaling. However, how this signaling event is regulated has not yet been fully understood. Here we demonstrate that TRIP6, an LPA2 receptor-interacting adaptor protein, functions as a positive regulator of nuclear factor-κB and JNK signaling through direct binding to and activation of the E3 ligase TRAF6.

View Article and Find Full Text PDF

TRIP6 is an adaptor protein that regulates cell motility and antiapoptotic signaling. Although it has been implicated in tumorigenesis, the underlying mechanism remains largely unknown. Here we provide evidence that TRIP6 promotes tumorigenesis by serving as a bridge to promote the recruitment of p27(KIP1) to AKT in the cytosol.

View Article and Find Full Text PDF

Thyroid hormone receptor interacting protein 6 (TRIP6), also known as zyxin-related protein-1 (ZRP-1), is an adaptor protein that belongs to the zyxin family of LIM proteins. TRIP6 is primarily localized in the cytosol or focal adhesion plaques, and may associate with the actin cytoskeleton. Additionally, it is capable of shuttling to the nucleus to serve as a transcriptional coregulator.

View Article and Find Full Text PDF

The Fas/CD95 receptor mediates apoptosis but is also capable of triggering nonapoptotic signals. However, the mechanisms that selectively regulate these opposing effects are not yet fully understood. Here we demonstrate that the activation of Fas or stimulation with lysophosphatidic acid (LPA) induces cytoskeletal reorganization, leading to the association of Fas with actin stress fibers and the adaptor protein TRIP6.

View Article and Find Full Text PDF