Publications by authors named "Victor Solovyev"

Pomegranate has a unique evolutionary history given that different cultivars have eight or nine bivalent chromosomes with possible crossability between the two classes. Therefore, it is important to study chromosome evolution in pomegranate to understand the dynamics of its population. Here, we assembled the Azerbaijani cultivar "Azerbaijan guloyshasi" (AG2017; 2n = 16) and re-sequenced six cultivars to track the evolution of pomegranate and to compare it with previously published assembled and re-sequenced cultivars.

View Article and Find Full Text PDF

Exceptionally strong enhancement of the Raman signal exceeding eight orders of magnitude for near-infrared (1064 nm) excitation is demonstrated for an array of dielectric submicron pillars covered by a relatively thick metal layer. The microstructure is designed to support 'spoof' plasmon-polariton excitations with resonant frequencies significantly below the fundamental surface plasmon resonance. Experiments reveal a relatively narrow range of spatial parameters for the optimal resonant scattering enhancement.

View Article and Find Full Text PDF

Background: The three epidemiologically important Opisthorchiidae liver flukes Opisthorchis felineus, O. viverrini, and Clonorchis sinensis, are believed to harbour similar potencies to provoke hepatobiliary diseases in their definitive hosts, although their populations have substantially different ecogeographical aspects including habitat, preferred hosts, population structure. Lack of O.

View Article and Find Full Text PDF

Human prefrontal cortex (PFC) is associated with broad individual variabilities in functions linked to personality, social behaviors, and cognitive functions. The phenotype variabilities associated with brain functions can be caused by genetic or epigenetic factors. The interactions between these factors in human subjects is, as of yet, poorly understood.

View Article and Find Full Text PDF

Motivation: Computational identification of promoters is notoriously difficult as human genes often have unique promoter sequences that provide regulation of transcription and interaction with transcription initiation complex. While there are many attempts to develop computational promoter identification methods, we have no reliable tool to analyze long genomic sequences.

Results: In this work, we further develop our deep learning approach that was relatively successful to discriminate short promoter and non-promoter sequences.

View Article and Find Full Text PDF

Apart from the main plasmon-polariton resonance of the surface-enhanced Raman scattering (SERS) occurring at 480 - 530 nm, an additional resonance was observed for substrates with two silver layers separated by a dielectric layer which support extra plasmon modes with decreased group velocities. The novel SERS resonance is shifted towards lower energies and has comparable amplitude, its exact energy position being determined by the thickness of the dielectric interlayer. The experimental findings provide a ground for the engineering of SERS-substrates with the spectral position of the additional resonance matched with the photon energy of the pump laser over a fairly wide range of laser wavelengths.

View Article and Find Full Text PDF

Computational analysis of promoters is hindered by the complexity of their architecture. In less studied genomes with complex organization, false positive promoter predictions are common. Accurate identification of transcription start sites and core promoter regions remains an unsolved problem.

View Article and Find Full Text PDF

Background: Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes.

View Article and Find Full Text PDF

It is becoming more evident that computational methods are needed for the identification and the mapping of pathways in new genomes. We introduce an automatic annotation system (ARBA4Path Association Rule-Based Annotator for Pathways) that utilizes rule mining techniques to predict metabolic pathways across wide range of prokaryotes. It was demonstrated that specific combinations of protein domains (recorded in our rules) strongly determine pathways in which proteins are involved and thus provide information that let us very accurately assign pathway membership (with precision of 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the challenge of accurately identifying promoters—key DNA regions that initiate transcription—using Convolutional Neural Networks (CNN) to analyze sequence features across different organisms, including humans, mice, plants, and bacteria.
  • CNN models achieved high accuracy in classifying promoters, with significant success rates for TATA and non-TATA promoters, particularly in human and Arabidopsis sequences, indicating the effectiveness of the deep learning approach in capturing complex promoter characteristics.
  • A new program, CNNProm, has been developed to utilize these CNN models for promoter prediction, which can be broadly applied to various genomes, and includes a random substitution method to identify conserved functional elements without needing specific promoter features.
View Article and Find Full Text PDF

Our current knowledge of eukaryotic promoters indicates their complex architecture that is often composed of numerous functional motifs. Most of known promoters include multiple and in some cases mutually exclusive transcription start sites (TSSs). Moreover, TSS selection depends on cell/tissue, development stage and environmental conditions.

View Article and Find Full Text PDF

We describe updates to the Rice SNP-Seek Database since its first release. We ran a new SNP-calling pipeline followed by filtering that resulted in complete, base, filtered and core SNP datasets. Besides the Nipponbare reference genome, the pipeline was run on genome assemblies of IR 64, 93-11, DJ 123 and Kasalath.

View Article and Find Full Text PDF

The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation.

View Article and Find Full Text PDF

The emergence and spread of multidrug-resistant (MDR) bacteria have been regarded as major challenges among health care-associated infections worldwide. Here, we report the draft genome sequence of an MDR Stenotrophomonas maltophilia strain isolated in 2014 from King Abdulla Medical City, Makkah, Saudi Arabia.

View Article and Find Full Text PDF

Motivation: Next-generation sequencing generates large amounts of data affected by errors in the form of substitutions, insertions or deletions of bases. Error correction based on the high-coverage information, typically improves de novo assembly. Most existing tools can correct substitution errors only; some support insertions and deletions, but accuracy in many cases is low.

View Article and Find Full Text PDF

Unlabelled: Gene transcription is mostly conducted through interactions of various transcription factors and their binding sites on DNA (regulatory elements, REs). Today, we are still far from understanding the real regulatory content of promoter regions. Computer methods for identification of REs remain a widely used tool for studying and understanding transcriptional regulation mechanisms.

View Article and Find Full Text PDF

Multiple sequence alignments (MSAs) are a prerequisite for a wide variety of evolutionary analyses. Published assessments and benchmark data sets for protein and, to a lesser extent, global nucleotide MSAs are available, but less effort has been made to establish benchmarks in the more general problem of whole-genome alignment (WGA). Using the same model as the successful Assemblathon competitions, we organized a competitive evaluation in which teams submitted their alignments and then assessments were performed collectively after all the submissions were received.

View Article and Find Full Text PDF

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development.

View Article and Find Full Text PDF

Background: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.

View Article and Find Full Text PDF

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome.

View Article and Find Full Text PDF

A report on 'A Wellcome Trust Scientific Conference: Applied Bioinformatics and Public Health Microbiology 2011', Hinxton, Cambridge, 1-3 June, 2011.

View Article and Find Full Text PDF

Promoter sequences are the main regulatory elements of gene expression. Their recognition by computer algorithms is fundamental for understanding gene expression patterns, cell specificity and development. This chapter describes the advanced approaches to identify promoters in animal, plant and bacterial sequences.

View Article and Find Full Text PDF

We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis.

View Article and Find Full Text PDF
Article Synopsis
  • - The cattle genome was sequenced to enhance the understanding of ruminant biology and evolution, containing at least 22,000 genes with 14,345 orthologs shared across seven mammal species.
  • - Certain regions in the cattle genome have a higher density of segmental duplications, indicating unique evolutionary changes, particularly in genes linked to lactation and immune responses.
  • - This genome sequence serves as a valuable resource for studying mammalian evolution and improving livestock genetics, which can lead to better milk and meat production.
View Article and Find Full Text PDF

Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes.

View Article and Find Full Text PDF