Publications by authors named "Victor Solodushko"

is a Gram-negative, curved, rod-shaped organism that can cause sepsis due to either gastroenteritis when ingested (usually via raw oysters) or skin infections when introduced into cuts or abrasions. Found in estuarine waters (coastal waters where fresh water from streams mixes with salt water from the ocean resulting in water of intermediate salinity (i.e.

View Article and Find Full Text PDF

Synthesizing mRNA in vitro is a standard and simple procedure. Adding the 5' cap and 3' polyadenylated (poly(A)) tail to make this mRNA functional for use as a vaccine or therapy increases the time and cost of production and usually decreases the yield, however. We designed mRNA that lacked a cap and poly(A) tail but included an internal ribosomal entry site (IRES) to initiate protein translation.

View Article and Find Full Text PDF
Article Synopsis
  • Chikungunya virus (CHIKV) can cause long-lasting joint pain, especially in tropical and subtropical areas, and currently, there are no approved vaccines to prevent it.
  • Researchers are exploring DNA-launched virus-like particle (VLP) vaccines as a safer alternative to traditional vaccines, but there is a lack of comprehensive mouse models that include both sexes for testing.
  • A study evaluated these vaccines using engineered virus strains in male and female mice, revealing the potential effectiveness of DNA-launched VLP vaccines and highlighting gender differences in viral load, which could influence future vaccine development.
View Article and Find Full Text PDF

DNA vaccines have great potential to control infectious disease, particularly those caused by intracellular organisms. They are inexpensive to produce and can be quickly modified to combat emerging infectious threats, but often fail to generate a strong immunologic response limiting enthusiasm for their use in humans and animals. To improve the immunogenic response, we developed a DNA vaccine in which the F protein ectodomain of Respiratory Syncytial Virus (RSV-F) was covalently linked to specific antigens of interest.

View Article and Find Full Text PDF

Minimal piggyBac vectors are a modified single-plasmid version of the classical piggyBac delivery system that can be used for stable transgene integration. These vectors have a truncated terminal domain in the delivery cassette and thus, integrate significantly less flanking transposon DNA into host cell chromatin than classical piggyBac vectors. Herein, we test various characteristics of this modified transposon.

View Article and Find Full Text PDF

Background: Transient production of gamma-retroviruses, including self-inactivating (SIN) retroviruses, is a common method for rapidly generating virus capable of gene delivery. Stable (continuous) production of virus is preferable to transient production for clinical and biotechnology purposes, however, because it allows for significant quantities of a uniform virus to be generated over a prolonged period of time, thus allowing for longitudinal functional studies and quality analysis. Unfortunately, stable production of SIN retroviruses is difficult to achieve.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates why pulmonary endothelial cells in diabetics don't develop significant vascular disease despite exposure to high glucose levels, hypothesizing that they take up less glucose due to lower oxygen tension.
  • Contrary to expectations, the research found no significant difference in glucose uptake between pulmonary and aortic endothelial cells, with both cell types increasing glucose uptake as oxygen tension decreased.
  • The results indicate that while oxygen levels can affect glucose uptake, this increase alone doesn't lead to harmful effects like protein damage or advanced glycation endproducts in those vascular cells.
View Article and Find Full Text PDF

Tetracycline-inducible systems allow for either suppression or induction of transgene expression to facilitate studies of cell physiology. Doxycycline is a preferred inducer for these gene expression systems due to its membrane permeability; however, the heterocyclic structure of doxycycline exhibits fluorogenic properties that can potentially bias measurement of other fluorochromes. Thus the simultaneous use of tetracycline-inducible systems and fluorescent proteins as reporter genes or as intracellular biosensors may lead to potentially confounding results.

View Article and Find Full Text PDF

Pulmonary artery endothelial cells (PAEC) in an intact vessel are continually exposed to serum, but unless injured, do not proliferate, constrained by confluence. In contrast, pulmonary artery smooth muscle cells (PASMC) attain, and maintain, confluence in the presence of minimal serum, protected from serum's stimulatory effects except when the endothelial barrier becomes more permeable. We hypothesized therefore, that confluent PASMC may be less constrained by contact inhibition in the presence of serum than PAEC and tested this idea by exposing confluent non-transformed human PAEC and PASMC to media containing increasing concentrations of fetal bovine serum (FBS) and determining cell growth over 7 days.

View Article and Find Full Text PDF

p19(ARF) is a tumor suppressor that leads to cell cycle arrest or apoptosis by stabilizing p53. p19(ARF) is not critical for cell cycle regulation under normal conditions, but loss of p19(ARF) is seen in many human cancers, and a murine p19(Arf) knockout model leads to malignant proliferation and tumor formation; its role in controlling nonmalignant proliferation is less defined. To examine this question, pulmonary artery smooth muscle cells (PASMC) were expanded in culture from a transgenic mouse in which the coding sequence of the p19(Arf) gene was replaced with a cDNA encoding green fluorescent protein (GFP), leaving the promoter intact.

View Article and Find Full Text PDF

Using adapted retroviruses for gene delivery is a modern and powerful tool in biological research as well as a promising approach for gene therapy. An important limitation for the extensive use of retroviral vectors is the low infection rate in target cells such as pulmonary vascular endothelial cells due to the insufficient infectivity of standard retrovirus supernatants that can only be overcome by complicated methods of virus concentration. This paper describes two easy methods to augment target cell infectivity, first by increasing the retroviral titer in the medium collected from packaging cells by stimulation of viral propagation with dexamethasone, and second, by increasing target cell sensitivity to retroviral infection by the glucocorticoid receptor antagonist, mifepristone.

View Article and Find Full Text PDF

Unique among the vascular beds, loss of endothelial integrity in the pulmonary microcirculation due to injury can lead to rapidly fatal hypoxemia. The ability to regain confluence and re-establish barrier function is central to restoring proper gas exchange. The adult respiratory distress syndrome (ARDS) is a heterogeneous disease, however, meaning that endothelial cells within different regions of the lung do not likely see the same oxygen tension as they attempt to proliferate and re-establish an intact endothelial monolayer; the effect of hypoxia on the integrity of this newly formed endothelial monolayer is not clear.

View Article and Find Full Text PDF

Endothelial cells perform a number of important functions including release of vasodilators, control of the coagulation cascade, and restriction of solutes and fluid from the extravascular space. Regulation of fluid balance is of particular importance in the microcirculation of the lung where the loss of endothelial barrier function can lead to alveolar flooding and life-threatening hypoxemia. Significant heterogeneity exists between endothelial cells lining the microcirculation and cells from larger pulmonary arteries, however, and these differences may be relevant in restoring barrier function following vascular injury.

View Article and Find Full Text PDF

In most experimental gene therapy protocols involving stem/progenitor cells, only a small fraction of cells, often therapeutically inadequate, can be transduced and made to express the therapeutic gene. A promising strategy for overcoming this problem is the use of a dominant selection marker, such as a drug resistance gene. In this paper, we explore the potential of the heavy subunit of gamma-glutamylcysteine synthetase (gamma-GCSh) to act as a selection marker.

View Article and Find Full Text PDF