Publications by authors named "Victor Sluiter"

This paper introduces a method for measuring 3D tibiofemoral kinematics using a multi-channel A-mode ultrasound system under dynamic conditions. The proposed system consists of a multi-channel A-mode ultrasound system integrated with a conventional motion capture system (i.e.

View Article and Find Full Text PDF

Operating in extreme environments is often challenging due to the lack of perceptual knowledge. During fire incidents in large buildings, the extreme levels of smoke can seriously impede a firefighter's vision, potentially leading to severe material damage and loss of life. To increase the safety of firefighters, research is conducted in collaboration with Dutch fire departments into the usability of Unmanned Ground Vehicles to increase situational awareness in hazardous environments.

View Article and Find Full Text PDF

Tracking joint motion of the lower extremity is important for human motion analysis. In this study, we present a novel ultrasound-based motion tracking system for measuring three-dimensional (3D) position and orientation of the femur and tibia in 3D space and quantifying tibiofemoral kinematics under dynamic conditions. As ultrasound is capable of detecting underlying bone surface noninvasively through multiple layers of soft tissues, an integration of multiple A-mode ultrasound transducers with a conventional motion tracking system provides a new approach to track the motion of bone segments during dynamic conditions.

View Article and Find Full Text PDF

The currently accepted interval of weekly cast changes in the treatment of clubfeet seems unsubstantiated. A force sensor is needed to determine the adaptation rate of a clubfoot to establish what cast change interval would be most effective and efficient. We developed a force sensor based on the principle that the resonance frequency of an LC-tank changes when a metal target is brought in close proximity.

View Article and Find Full Text PDF

Purpose: A fast and accurate intraoperative registration method is important for Computer-Aided Orthopedic Surgery (CAOS). A-mode ultrasound (US) is able to acquire bone surface data in a non-invasive manner. To utilize A-mode US in CAOS, a suitable registration algorithm is necessary with a small number of registration points and the presence of measurement errors.

View Article and Find Full Text PDF

The purpose of this study is to investigate the technical feasibility of measuring relative positions and orientations of the tibia with respect to the femur in an in-vitro experiment by using a 3D-tracked A-mode ultrasound system and to determine its accuracy of angular and translational measurements. As A-mode ultrasound is capable of detecting bone surface through soft tissue in a non-invasive manner, the combination of a single A-mode ultrasound transducer with an optical motion tracking system provides the possibility for digitizing the 3D locations of bony points at different anatomical regions on the thigh and the shank. After measuring bony points over a large area of both the femur and tibia, the bone models of the femur and tibia that were segmented from CT or MRI images were registered to the corresponding bony points.

View Article and Find Full Text PDF

Skin-mounted marker based motion capture systems are widely used in measuring the movement of human joints. Kinematic measurements associated with skin-mounted markers are subject to soft tissue artifacts (STA), since the markers follow skin movement, thus generating errors when used to represent motions of underlying bone segments. We present a novel ultrasound tracking system that is capable of directly measuring tibial and femoral bone surfaces during dynamic motions, and subsequently measuring six-degree-of-freedom (6-DOF) tibiofemoral kinematics.

View Article and Find Full Text PDF

Background: Assessment of hand kinematics is important when evaluating hand functioning. Major drawbacks of current sensing glove systems are lack of rotational observability in particular directions, labour intensive calibration methods which are sensitive to wear and lack of an absolute hand orientation estimate.

Methods: We propose an ambulatory system using inertial sensors that can be placed on the hand, fingers and thumb.

View Article and Find Full Text PDF