Publications by authors named "Victor Serebrov"

Pathway activating mutations of the transcription factor NRF2 and its negative regulator KEAP1 are strongly correlative with poor clinical outcome with pemetrexed/carbo(cis)platin/pembrolizumab (PCP) chemo-immunotherapy in lung cancer. Despite the strong genetic support and therapeutic potential for a NRF2 transcriptional inhibitor, currently there are no known direct inhibitors of the NRF2 protein or its complexes with MAF and/or DNA. Herein we describe the design of a novel and high-confidence homology model to guide a medicinal chemistry effort that resulted in the discovery of a series of peptides that demonstrate high affinity, selective binding to the Antioxidant Response Element (ARE) DNA and thereby displace NRF2-MAFG from its promoter, which is an inhibitory mechanism that to our knowledge has not been previously described.

View Article and Find Full Text PDF

Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014).

View Article and Find Full Text PDF

RNA-protein interactions govern every aspect of RNA metabolism, and aberrant RNA-binding proteins are the cause of hundreds of genetic diseases. Quantitative measurements of these interactions are necessary in order to understand mechanisms leading to diseases and to develop efficient therapies. Existing methods of RNA-protein interactome capture can afford a comprehensive snapshot of RNA-protein interaction networks but lack the ability to characterize the dynamics of these interactions.

View Article and Find Full Text PDF

Argonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization—a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences.

View Article and Find Full Text PDF

Removal of introns from nascent transcripts (pre-mRNAs) by the spliceosome is an essential step in eukaryotic gene expression. Previous studies have suggested that the earliest steps in spliceosome assembly in yeast are highly ordered and the stable recruitment of U1 small nuclear ribonucleoprotein particle (snRNP) to the 5' splice site necessarily precedes recruitment of U2 snRNP to the branch site to form the "prespliceosome." Here, using colocalization single-molecule spectroscopy to follow initial spliceosome assembly on eight different S.

View Article and Find Full Text PDF

The NS3 helicase from hepatitis C virus is a prototypical DEx(H/D) RNA helicase. NS3 has been shown to unwind RNA in a discontinuous manner, pausing after long apparent steps of unwinding. We systematically examined the effects of duplex stability and ionic conditions on the periodicity of the NS3 unwinding cycle.

View Article and Find Full Text PDF

Nonstructural (NS) protein 3 is a DEXH/D-box motor protein that is an essential component of the hepatitis C viral (HCV) replicative complex. The full-length NS3 protein contains two functional modules, both of which are essential in the life cycle of HCV: a serine protease domain at the N terminus and an ATPase/helicase domain (NS3hel) at the C terminus. Truncated NS3hel constructs have been studied extensively; the ATPase, nucleic acid binding, and helicase activities have been examined and NS3hel has been used as a target in the development of antivirals.

View Article and Find Full Text PDF

Helicases are a ubiquitous class of enzymes involved in nearly all aspects of DNA and RNA metabolism. Despite recent progress in understanding their mechanism of action, limited resolution has left inaccessible the detailed mechanisms by which these enzymes couple the rearrangement of nucleic acid structures to the binding and hydrolysis of ATP. Observing individual mechanistic cycles of these motor proteins is central to understanding their cellular functions.

View Article and Find Full Text PDF

The NS3 helicase is essential for cytoplasmic RNA replication by the hepatitis C virus, and it is a representative member of helicase superfamily 2 (SF2). NS3 is an important model system for understanding unwinding activities of DExH/D proteins, and it has been the subject of extensive structural and mutational analyses. Despite intense interest in NS3, the molecular and kinetic mechanisms for RNA unwinding by this helicase have remained obscure.

View Article and Find Full Text PDF