Publications by authors named "Victor S Saito"

Riparian ecosystems harbour unique biodiversity because of their close interconnections with adjacent aquatic ecosystems. Yet, how aquatic ecosystems influence terrestrial biodiversity over different spatial scales is poorly understood, particularly in the tropics. We conducted field campaigns to collect 235 terrestrial invertebrate assemblages along 150 m transects from 47 streams in both Brazil and the UK, compiling one of the largest known datasets of riparian invertebrate community composition at multiple spatial scales.

View Article and Find Full Text PDF

Food webs depict the tangled web of trophic interactions associated with the functioning of an ecosystem. Understanding the mechanisms providing stability to these food webs is therefore vital for conservation efforts and the management of natural systems. Here, we first characterised a tropical stream meta-food web and five individual food webs using a Bayesian Hierarchical approach unifying three sources of information (gut content analysis, literature compilation and stable isotope data).

View Article and Find Full Text PDF

A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.

View Article and Find Full Text PDF

Local communities and individual species jointly contribute to the overall beta diversity in metacommunities. However, it is mostly unknown whether the local contribution (LCBD) and the species contribution (SCBD) to beta diversity can be predicted by local and regional environmental characteristics and by species traits and taxonomic relatedness, respectively. We investigated the LCBD and SCBD of stream benthic diatoms and insects along a gradient of land use intensification, ranging from streams in pristine forests to agricultural catchments in southeast subtropical Brazil.

View Article and Find Full Text PDF

Metabolism controls the pace of life, driving major ecological patterns. We propose that the scaling of metabolism with temperature influences neutral processes of community assembly by controlling population dynamics independently of species identities. This perspective provides new insights into the prevalence of niche and neutral processes through universal energetic constraints.

View Article and Find Full Text PDF

Ecological drift can override the effects of deterministic niche selection on small populations and drive the assembly of some ecological communities. We tested this hypothesis with a unique data set sampled identically in 200 streams in two regions (tropical Brazil and boreal Finland) that differ in macroinvertebrate community size by fivefold. Null models allowed us to estimate the magnitude to which β-diversity deviates from the expectation under a random assembly process while taking differences in richness and relative abundance into account, i.

View Article and Find Full Text PDF

The role of niche differences and competition is invoked when one finds coexisting species to be more dissimilar in trait composition than expected at random in community assembly studies. This approach has been questioned as competition has been hypothesized to either lead to communities assembled by similar or dissimilar species, depending on whether species similarity reflects fitness or niche differences, respectively. A current problem is that the arguments used to draw relationships between competition and species similarity are based on pairwise theoretical examples, while in nature competition can occurs among a constellation of species with different levels of versatility in resources used.

View Article and Find Full Text PDF

The assumption that traits and phylogenies can be used as proxies of species niche has faced criticisms. Evidence suggested that phylogenic relatedness is a weak proxy of trait similarity. Moreover, different processes can select different traits, giving opposing signals in null model analyses.

View Article and Find Full Text PDF

Studies on phylogenetic community ecology usually infer habitat filtering when communities are phylogenetically clustered or competitive exclusion when communities are overdispersed. This logic is based on strong competition and niche similarity among closely related species-a less common phenomenon than previously expected. Dragonflies and damselflies are good models for testing predictions based on this logic because they behave aggressively towards related species due to mistaken identification of conspecifics.

View Article and Find Full Text PDF