Actuarial senescence (called 'senescence' hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among-individual heterogeneity in senescence rate (i.e.
View Article and Find Full Text PDFLaboratory studies with rodents indicate that in utero proximity of a female to male foetus can affect female's subsequent reproduction due to elevated testosterone exposure during early development. It remains unknown whether these findings can be generalised to non-laboratory species because the need for caesarean section makes it difficult to determine the intrauterine position outside laboratory conditions. As an alternative, some studies have compared the reproductive performance of individuals born in male-biased litters to those born in female-biased litters.
View Article and Find Full Text PDFIn many animal species, including humans, males have shorter lifespan and show faster survival aging than females. This differential increase in mortality between sexes could result from the accumulation of deleterious mutations in the mitochondrial genome of males due to the maternal mode of mtDNA inheritance. To date, empirical evidence supporting the existence of this mechanism - called the Mother Curse hypothesis - remains largely limited to a few study cases in humans and Drosophila.
View Article and Find Full Text PDFSex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans.
View Article and Find Full Text PDFThe familial structure of a population and the relatedness of its individuals are determined by its demography. There is, however, no general method to infer kinship directly from the life cycle of a structured population. Yet, this question is central to fields such as ecology, evolution and conservation, especially in contexts where there is a strong interdependence between familial structure and population dynamics.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2021
In many mammalian species, females live on average longer than males. In humans, women have consistently longer telomeres than men, and this has led to speculation that sex differences in telomere length (TL) could play a role in sex differences in longevity. To address the generality and drivers of patterns of sex differences in TL across vertebrates, we performed meta-analyses across 51 species.
View Article and Find Full Text PDFSenescence patterns are highly variable across the animal kingdom. However, while empirical evidence of actuarial senescence in vertebrates is accumulating in the wild and life history correlates of actuarial senescence are increasingly identified, both the extent and variation of reproductive senescence across species remain poorly studied. Here, we performed the first large-scale analysis of female reproductive senescence across 101 mammalian species that encompassed a wide range of Orders.
View Article and Find Full Text PDFIn human populations, women consistently outlive men, which suggests profound biological foundations for sex differences in survival. Quantifying whether such sex differences are also pervasive in wild mammals is a crucial challenge in both evolutionary biology and biogerontology. Here, we compile demographic data from 134 mammal populations, encompassing 101 species, to show that the female's median lifespan is on average 18.
View Article and Find Full Text PDFThe concept of actuarial senescence (defined here as the increase in mortality hazards with age) is often confounded with life span duration, which obscures the relative role of age-dependent and age-independent processes in shaping the variation in life span. We use the opportunity afforded by the Species360 database, a collection of individual life span records in captivity, to analyze age-specific mortality patterns in relation to variation in life span. We report evidence of actuarial senescence across 96 mammal species.
View Article and Find Full Text PDFAnimals in the wild die from a variety of different mortality sources, including predation, disease, and starvation. Different mortality sources selectively remove individuals with different body condition in different ways, and this variation in the condition dependence of mortality has evolutionary and demographic implications. Subsequent population dynamics are influenced by the strength of condition-dependent mortality during specific periods, with population growth impacted in different ways in short- versus long-lived species.
View Article and Find Full Text PDFEarly survival is highly variable and strongly influences observed population growth rates in most vertebrate populations. One of the major potential drivers of survival variation among juveniles is body mass. Heavy juveniles are better fed and have greater body reserves, and are thus assumed to survive better than light individuals.
View Article and Find Full Text PDF