Publications by authors named "Victor Rodriguez-Gonzalez"

Article Synopsis
  • The study looked at how different brain states, like resting with eyes open or closed and doing a task, are connected and change over time.
  • They used special brainwave recordings to track these changes and found that opening your eyes affects brain connectivity in a unique way.
  • The results showed that how quickly brain networks adjust during these different states can vary, especially depending on whether your eyes are open or closed.
View Article and Find Full Text PDF

Background: Hematopoietic cell transplantation (HCT) is a promising treatment for hematological diseases, yet access barriers like cost and limited transplant centers persist. Telemedicine-based patient navigation (PN) has emerged as a solution. This study presents a cost-free PN telemedicine clinic (TC) in collaboration with the National Marrow Donor Program.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is a brain sickness that affects memory and thinking skills.
  • Researchers have been using special techniques called MEG and EEG to look at how the brain changes in people with AD.
  • The study found that patients with AD show a simpler and more disrupted brain organization compared to healthy individuals, making their brains more vulnerable.
View Article and Find Full Text PDF

Schizophrenia has been associated with a reduced task-related modulation of cortical activity assessed through electroencephalography (EEG). However, to the best of our knowledge, no study so far has assessed the underpinnings of this decreased EEG modulation in schizophrenia. A possible substrate of these findings could be a decreased inhibitory function, a replicated finding in the field.

View Article and Find Full Text PDF

The majority of electroencephalographic (EEG) and magnetoencephalographic (MEG) studies filter and analyse neural signals in specific frequency ranges, known as "canonical" frequency bands. However, this segmentation, is not exempt from limitations, mainly due to the lack of adaptation to the neural idiosyncrasies of each individual. In this study, we introduce a new data-driven method to automatically identify frequency ranges based on the topological similarity of the frequency-dependent functional neural network.

View Article and Find Full Text PDF

Background And Objective: Neurofeedback (NF) is a paradigm that allows users to self-modulate patterns of brain activity. It is implemented with a closed-loop brain-computer interface (BCI) system that analyzes the user's brain activity in real-time and provides continuous feedback. This paradigm is of great interest due to its potential as a non-pharmacological and non-invasive alternative to treat non-degenerative brain disorders.

View Article and Find Full Text PDF

Background And Objective: Neurotechnologies have great potential to transform our society in ways that are yet to be uncovered. The rate of development in this field has increased significantly in recent years, but there are still barriers that need to be overcome before bringing neurotechnologies to the general public. One of these barriers is the difficulty of performing experiments that require complex software, such as brain-computer interfaces (BCI) or cognitive neuroscience experiments.

View Article and Find Full Text PDF

Dementia is a syndrome characterised by cognitive impairments, with a loss of learning/memory abilities at the earlier stages and executive dysfunction at the later stages. However, recent studies have suggested that impairments in both learning/memory abilities and executive functioning might co-exist. Cognitive impairments have been primarily evaluated using neuropsychological assessments, such as the Mini-Mental State Examination (MMSE).

View Article and Find Full Text PDF

Schizophrenia is a psychiatric disorder that has been shown to disturb the dynamic top-down processing of sensory information. Various imaging techniques have revealed abnormalities in brain activity associated with this disorder, both locally and between cerebral regions. However, there is increasing interest in investigating dynamic network response to novel and relevant events at the network level during an attention-demanding task with high-temporal-resolution techniques.

View Article and Find Full Text PDF

Connectivity analyses are widely used to assess the interaction brain networks. This type of analyses is usually conducted considering the well-known classical frequency bands: delta, theta, alpha, beta, and gamma. However, this parcellation of the frequency content can bias the analyses, since it does not consider the between-subject variability or the particular idiosyncrasies of the connectivity patterns that occur within a band.

View Article and Find Full Text PDF

The main objective of this study was to examine the influence that recording length, sampling frequency, and imaging modality have on the estimation and characterization of spontaneous brain meta-states during rest. To this end, a recently developed method of meta-state extraction and characterization was applied to a subset of 16 healthy elderly subjects from two independent electroencephalographic and magnetoencephalographic (EEG/MEG) databases. The recordings were segmented into the first 5, 10, 15, 20, 25, 30, 60 and 90-s of artifact-free activity and meta-states were extracted.

View Article and Find Full Text PDF

PICALM and CLU genes have been linked to alterations in brain biochemical processes that may have an impact on Alzheimer's disease (AD) development and neurophysiological dynamics. The aim of this study is to analyze the relationship between the electroencephalographic (EEG) activity and the PICALM and CLU alleles described as conferring risk or protective effects on AD patients and healthy controls. For this purpose, EEG activity was acquired from: 18 AD patients and 12 controls carrying risk alleles of both PICALM and CLU genes, and 35 AD patients and 12 controls carrying both protective alleles.

View Article and Find Full Text PDF

Dementia due to Alzheimer's disease (AD) is a neurological syndrome which has an increasing impact on society, provoking behavioral, cognitive, and functional impairments. AD lacks an effective pharmacological intervention; thereby, non-pharmacological treatments (NPTs) play an important role, as they have been proven to ameliorate AD symptoms. Nevertheless, results associated with NPTs are patient-dependent, and new tools are needed to predict their outcome and to improve their effectiveness.

View Article and Find Full Text PDF

Resting-state neural oscillations are used as biomarkers for functional diseases such as dementia, epilepsy, and stroke. However, accurate interpretation of clinical outcomes requires the identification and minimisation of potential confounding factors. While several studies have indicated that the menstrual cycle also alters brain activity, most of these studies were based on visual inspection rather than objective quantitative measures.

View Article and Find Full Text PDF

Cerebral hypoperfusion impairs brain activity and leads to cognitive impairment. Left and right common carotid arteries (CCA) are the major source of cerebral blood supply. It remains unclear whether blood flow in both CCA contributes equally to brain activity.

View Article and Find Full Text PDF

The characterization of the distinct dynamic functional connectivity (dFC) patterns that activate in the brain during rest can help to understand the underlying time-varying network organization. The presence and behavior of these patterns (known as meta-states) have been widely studied by means of functional magnetic resonance imaging (fMRI). However, modalities with high-temporal resolution, such as electroencephalography (EEG), enable the characterization of fast temporally evolving meta-state sequences.

View Article and Find Full Text PDF

. The aim of this study was to solve one of the current limitations for the characterization of the brain network in the Alzheimer's disease (AD) continuum. Nowadays, frequency-dependent approaches have reached contradictory results depending on the frequency band under study, tangling the possible clinical interpretations.

View Article and Find Full Text PDF

Dementia is a progressive cognitive syndrome, with few effective pharmacological treatments that can slow its progress. Hence, non-pharmacological treatments (NPTs) play an important role in improving patient symptoms and quality of life. Designing the optimal personalised NPT strategy relies on objectively and quantitatively predicting the treatment outcome.

View Article and Find Full Text PDF

Objective: Although magnetoencephalography and electroencephalography (M/EEG) signals at sensor level are robust and reliable, they suffer from different degrees of distortion due to changes in brain tissue conductivities, known as field spread and volume conduction effects. To estimate original neural generators from M/EEG activity acquired at sensor level, diverse source localisation algorithms have been proposed; however, they are not exempt from limitations and usually involve time-consuming procedures. Connectivity and network-based M/EEG analyses have been found to be affected by field spread and volume conduction effects; nevertheless, the influence of the aforementioned effects on widely used local activation parameters has not been assessed yet.

View Article and Find Full Text PDF

This study had two main objectives: (i) to study the effects of volume conduction on different connectivity metrics (Amplitude Envelope Correlation AEC, Phase Lag Index PLI, and Magnitude Squared Coherence MSCOH), comparing the coupling patterns at electrode- and sensor-level; and (ii) to characterize spontaneous EEG activity during different stages of Alzheimer's disease (AD) continuum by means of three complementary network parameters: node degree (k), characteristic path length (L), and clustering coefficient (C). Our results revealed that PLI and AEC are weakly influenced by volume conduction compared to MSCOH, but they are not immune to it. Furthermore, network parameters obtained from PLI showed that AD continuum is characterized by an increase in L and C in low frequency bands, suggesting lower integration and higher segregation as the disease progresses.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effect of volume conduction on different connectivity metrics: Amplitude Envelope Correlation (AEC), Phase Lag Index (PLI), and Magnitude Squared Coherence (MSCOH). These measures were applied to: (i) a synthetic model of 64 coupled oscillators; and (ii) a resting-state EEG database of 72 patients with dementia due to Alzheimer's disease (AD) and 37 cognitively healthy controls. Our results revealed that AEC and PLI are weakly influenced by the simulated volume conduction compared to MSCOH, although the three metrics are not immune to this effect.

View Article and Find Full Text PDF

In this study, a new automated noise rejection algorithm, the SOurce-estimate-Utilizing Noise-Discarding algorithm (SOUND), was evaluated on magnetoencephalographic (MEG) resting-state signals in order to select its optimal configuration parameters. Different values of the epoch length and the regularization parameter λ were assessed in three scenarios with ascending noise levels. Results show that it is possible to remarkably improve the Signal-to-Noise Ratio, without overly altering the signal of interest.

View Article and Find Full Text PDF

Objective: The characterization of brain functional connectivity is a helpful tool in the study of the neuronal substrates and mechanisms that are altered in Azheimer's disease (AD) and mild cognitive impairment (MCI). Recently, there has been a shift towards the characterization of dynamic functional connectivity (dFC), discarding the assumption of connectivity stationarity during the resting-state. The majority of these studies have been performed with functional magnetic resonance imaging recordings, with only a small subset being based on magnetoencephalography/electroencephalography (MEG/EEG).

View Article and Find Full Text PDF