If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits.
View Article and Find Full Text PDFThe low phytic acid () trait in soybeans can be conferred by loss-of-function mutations in genes encoding -inositol phosphate synthase and two epistatically interacting genes encoding multidrug-resistance protein ATP-binding cassette (ABC) transporters. However, perturbations in phytic acid biosynthesis are associated with poor seed vigor. Since the benefits of the trait, in terms of end-use quality and sustainability, far outweigh the negatives associated with poor seed performance, a fuller understanding of the molecular basis behind the negatives will assist crop breeders and engineers in producing variates with and better germination rate.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2020
The Japanese traditional fermented soybean or "natto", a cheap and nutrient-rich food, is very popular in Japan. The low-phytate (LP) soybeans exhibit higher mineral bioavailability; however, their use in preparing natto has not been reported. Therefore, in this study, characteristics and quality of natto prepared using LP soybean were investigated.
View Article and Find Full Text PDFTwo low-phytate soybean (Glycine max (L.) Merr.) mutant lines- V99-5089 (mips mutation on chromosome 11) and CX-1834 (mrp-l and mrp-n mutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans, traits that are highly desirable from a nutritional and environmental standpoint.
View Article and Find Full Text PDFUnderstanding the influence of the valuable "low-phytate" trait on soybean seedling growth, physiology, and biochemistry will facilitate its future exploitation. The aim was to elucidate the physiological and biochemical characteristics of low-phytate (LP) soybean at the seedling stage. To this end, seed P and mineral content and seedling dry weight, carbon (C) and nitrogen (N) accumulation, nitrogen fixation, and root and nodule phytase and phosphatase activity levels were measured at 21 d after sowing LP and normal-phytate (NP) soybean lines.
View Article and Find Full Text PDFThe (), or "low-phytate" seed trait can provide numerous potential benefits to the nutritional quality of foods and feeds and to the sustainability of agricultural production. Major benefits include enhanced phosphorus (P) management contributing to enhanced sustainability in non-ruminant (poultry, swine, and fish) production; reduced environmental impact due to reduced waste P in non-ruminant production; enhanced "global" bioavailability of minerals (iron, zinc, calcium, magnesium) for both humans and non-ruminant animals; enhancement of animal health, productivity and the quality of animal products; development of "low seed total P" crops which also can enhance management of P in agricultural production and contribute to its sustainability. Evaluations of this trait by industry and by advocates of biofortification via breeding for enhanced mineral density have been too short term and too narrowly focused.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCrop seed phosphorus (P) is primarily stored in the form of phytate, which is generally indigestible by monogastric animals. Low-phytate soybean lines have been developed to solve various problems related to seed phytate. There is little information available on the effects of P fertilization on productivity, physiological characteristics, and seed yield and quality in low-phytate soybeans.
View Article and Find Full Text PDFPlant-based diets in low-income countries (LICs) have a high content of phytic acid (myo-inositol hexaphosphate [InsP6]) and associated magnesium, potassium, and calcium salts. Together, InsP6 acid and its salts are termed "phytate" and are potent inhibitors of iron and zinc absorption. Traditional food processing can reduce the InsP6 content through loss of water-soluble phytate or through phytase hydrolysis to lower myo-inositol phosphate forms that no longer inhibit iron and zinc absorption.
View Article and Find Full Text PDFA dominant loss of function mutation in -inositol phosphate synthase () gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy.
View Article and Find Full Text PDFEstimated physiologic requirements (PRs) for zinc increase in late pregnancy and early lactation, but the effect on dietary zinc requirements is uncertain. The aim of this study was to determine changes in daily fractional absorbed zinc and total absorbed zinc (TAZ) from ad libitum diets of differing phytate contents in relation to physiologic zinc requirements during pregnancy and lactation. This was a prospective observational study of zinc absorption at 8 (phase 1) and 34 (phase 2) wk of gestation and 2 (phase 3) and 6 (phase 4) mo of lactation.
View Article and Find Full Text PDFOne of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions.
View Article and Find Full Text PDFThe potential benefits of the low phytic acid (lpa) seed trait for human and animal nutrition, and for phosphorus management in non-ruminant animal production, are well documented. However, in many cases the lpa trait is associated with impaired seed or plant performance, resulting in reduced yield. This has given rise to the perception that the lpa trait is tightly correlated with reduced yield in diverse crop species.
View Article and Find Full Text PDFInositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo-inositol hexakisphosphate (InsP6 ).
View Article and Find Full Text PDFInositol hexaphosphate (Ins P6 or "phytic acid") typically accounts for 75 (± 10%) of seed total phosphorus (P). In some cases, genetic blocks in seed Ins P6 accumulation can also alter the distribution or total amount of seed P. In nonmutant barley (Hordeum vulgare L.
View Article and Find Full Text PDFDietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron.
View Article and Find Full Text PDFPhytic acid (PA) is the storage form of phosphorus (P) in seeds and plays an important role in the nutritional quality of food crops. There is little information on the genetics of seed and seedling PA in mungbean [Vigna radiata (L.) Wilczek].
View Article and Find Full Text PDFInorganic N is available to plants from the soil as ammonium [Formula: see text] and nitrate [Formula: see text]. We studied how wheat grown hydroponically to senescence in controlled environmental chambers is affected by N form ([Formula: see text] vs. [Formula: see text]) and CO(2) concentration ("subambient," "ambient," and "elevated") in terms of biomass, yield, and nutrient accumulation and partitioning.
View Article and Find Full Text PDFDietary phytic acid is a major causative factor for low Zn bioavailability in many cereal- and legume-based diets. The bioavailability of Zn in seed of low phytic acid (lpa) variants of maize ( Zea mays L.), rice ( Oryza sativa L.
View Article and Find Full Text PDFAfter age 6 mo, the combination of breast-feeding and unfortified plant-based complementary feeding provides inadequate zinc (Zn). Additionally, high phytate intakes compromise the bioavailability of zinc. Our principal objective in this randomized controlled, doubly masked trial was to determine the effect of substituting low-phytate maize, a daily 5-mg zinc supplement, or both, in infants between ages 6-12 mo on impaired linear growth velocity, a common feature of zinc deficiency.
View Article and Find Full Text PDFThe cellular myo-inositol (Ins) pool is important to many metabolic and signaling pathways in plants. Ins monophosphatase (IMPase; EC 3.1.
View Article and Find Full Text PDFThe intestine is the major route of excretion of endogenous zinc (Zn) and has a key role in maintaining Zn homeostasis. The principal objective of this paper is to provide an interpretative report of quantities of endogenous fecal Zn (EFZ) excreted by rural Guatemalan school children fed either normal or low phytate maize as their principal food staple. EFZ was measured by a Zn stable isotope technique.
View Article and Find Full Text PDF