Chimeric antigen receptor T (CAR T) cell therapy has been proven to be successful against a variety of leukemias and lymphomas. This paper undertakes an analytical and numerical study of a mathematical model describing the competition of CAR T, leukemia, tumor, and B cells. Considering its significance in sustaining anti-CD19 CAR T-cell stimulation, a B-cell source term is integrated into the model.
View Article and Find Full Text PDFBackground: Lung nodules observed in cancer screening are believed to grow exponentially, and their associated volume doubling time (VDT) has been proposed for nodule classification. This retrospective study aimed to elucidate the growth dynamics of lung nodules and determine the best classification as either benign or malignant.
Methods: Data were analyzed from 180 participants (73.
Background: Stereotactic radiotherapy is the preferred treatment for managing patients with fewer than five brain metastases (BMs). However, some lesions recur after irradiation. The purpose of this study was to identify patients who are at a higher risk of failure, which can help in adjusting treatments and preventing recurrence.
View Article and Find Full Text PDFFibrous dysplasia (FD) is a mosaic non-inheritable genetic disorder of the skeleton in which normal bone is replaced by structurally unsound fibro-osseous tissue. There is no curative treatment for FD, partly because its pathophysiology is not yet fully known. We present a simple mathematical model of the disease incorporating its basic known biology, to gain insight on the dynamics of the involved bone-cell populations, and shed light on its pathophysiology.
View Article and Find Full Text PDFBrain metastases (BMs) are the most common intracranial tumor type and a significant health concern, affecting approximately 10% to 30% of all oncological patients. Although significant progress is being made, many aspects of the metastatic process to the brain and the growth of the resulting lesions are still not well understood. There is a need for an improved understanding of the growth dynamics and the response to treatment of these tumors.
View Article and Find Full Text PDFMetastasis is the process through which cancer cells break away from a primary tumor, travel through the blood or lymph system, and form new tumors in distant tissues. One of the preferred sites for metastatic dissemination is the brain, affecting more than 20% of all cancer patients. This figure is increasing steadily due to improvements in treatments of primary tumors.
View Article and Find Full Text PDFBackground: The Response Assessment in Neuro-Oncology for Brain Metastases (RANO-BM) criteria are the gold standard for assessing brain metastases (BMs) treatment response. However, they are limited by their reliance on 1D, despite the routine use of high-resolution T1-weighted MRI scans for BMs, which allows for 3D measurements. Our study aimed to investigate whether volumetric measurements could improve the response assessment in patients with BMs.
View Article and Find Full Text PDFChromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX).
View Article and Find Full Text PDFLow-grade gliomas are primary brain tumors that arise from glial cells and are usually treated with temozolomide (TMZ) as a chemotherapeutic option. They are often incurable, but patients have a prolonged survival. One of the shortcomings of the treatment is that patients eventually develop drug resistance.
View Article and Find Full Text PDFTumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce.
View Article and Find Full Text PDFThe translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms.
View Article and Find Full Text PDFBrain metastasis (BM) is one of the main complications of many cancers, and the most frequent malignancy of the central nervous system. Imaging studies of BMs are routinely used for diagnosis of disease, treatment planning and follow-up. Artificial Intelligence (AI) has great potential to provide automated tools to assist in the management of disease.
View Article and Find Full Text PDFDifferent evolutionary processes push cancers to increasingly aggressive behaviors, energetically sustained by metabolic reprogramming. The collective signature emerging from this transition is macroscopically displayed by positron emission tomography (PET). In fact, the most readily PET measure, the maximum standardized uptake value (SUV), has been found to have prognostic value in different cancers.
View Article and Find Full Text PDFBackground: Radiation necrosis (RN) is a frequent adverse event after fractionated stereotactic radiotherapy (FSRT) or single-session stereotactic radiosurgery (SRS) treatment of brain metastases (BMs). It is difficult to distinguish RN from progressive disease (PD) due to their similarities in the magnetic resonance images. Previous theoretical studies have hypothesized that RN could have faster, although transient, growth dynamics after FSRT/SRS, but no study has proven that hypothesis using patient data.
View Article and Find Full Text PDFEvolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment.
View Article and Find Full Text PDFThe detection of prostate cancer recurrence after external beam radiotherapy relies on the measurement of a sustained rise of serum prostate-specific antigen (PSA). However, this biochemical relapse may take years to occur, thereby delaying the delivery of a secondary treatment to patients with recurring tumors. To address this issue, we propose to use patient-specific forecasts of PSA dynamics to predict biochemical relapse earlier.
View Article and Find Full Text PDFBackground: Temozolomide (TMZ) is an oral alkylating agent active against gliomas with a favorable toxicity profile. It is part of the standard of care in the management of glioblastoma (GBM), and is commonly used in low-grade gliomas (LGG). mathematical models can potentially be used to personalize treatments and to accelerate the discovery of optimal drug delivery schemes.
View Article and Find Full Text PDFPurpose: Most monotherapies available against glioblastoma multiforme (GBM) target individual hallmarks of this aggressive brain tumor with minimal success. In this article, we propose a therapeutic strategy using coenzyme Q (CoQ) as a pleiotropic factor that crosses the blood-brain barrier and accumulates in cell membranes acting as an antioxidant, and in mitochondrial membranes as a regulator of cell bioenergetics and gene expression.
Methods: Xenografts of U251 cells in nu/nu mice were used to assay tumor growth, hypoxia, angiogenesis, and inflammation.
(1) Aim: To study the associations between imaging parameters derived from contrast-enhanced MRI (CE-MRI) and 18F-fluorocholine PET/CT and their performance as prognostic predictors in isocitrate dehydrogenase wild-type (IDH-wt) high-grade gliomas. (2) Methods: A prospective, multicenter study (FuMeGA: Functional and Metabolic Glioma Analysis) including patients with baseline CE-MRI and 18F-fluorocholine PET/CT and IDH wild-type high-grade gliomas. Clinical variables such as performance status, extent of surgery and adjuvant treatments (Stupp protocol vs others) were obtained and used to discriminate overall survival (OS) and progression-free survival (PFS) as end points.
View Article and Find Full Text PDFGliomas are characterized by an inherent diffuse and irregular morphology that prevents defining a boundary between tumor and healthy tissue, both in imaging assessment and surgical field. The effective identification of the extent of the disease in diffuse and multiple gliomas is crucial for their management but doing so by radiological means can be challenging. We present a broad spectrum of diffuse and multiple gliomas using 18F-fluorocholine PET/CT, demonstrating the potential of metabolic imaging in the evaluation of these gliomas, with implications in patient clinical management and outcome.
View Article and Find Full Text PDFObjective: The purpose of this study was to evaluate the prognostic value of novel geometric variables obtained from pre-treatment [F]FDG PET/CT with respect to classical ones in patients with non-small cell lung cancer (NSCLC).
Methods: Retrospective study including stage I-III NSCLC patients with baseline [F]FDG PET/CT. Clinical, histopathologic, and metabolic parameters were obtained.
Low-grade gliomas (LGGs) are brain tumors characterized by their slow growth and infiltrative nature. Treatment options for these tumors are surgery, radiation therapy and chemotherapy. The optimal use of radiation therapy and chemotherapy is still under study.
View Article and Find Full Text PDFChimeric Antigen Receptor (CAR) T-cell therapy has demonstrated high rates of response in recurrent B-cell Acute Lymphoblastic Leukemia in children and young adults. Despite this success, a fraction of patients' experience relapse after treatment. Relapse is often preceded by recovery of healthy B cells, which suggests loss or dysfunction of CAR T-cells in bone marrow.
View Article and Find Full Text PDF