Publications by authors named "Victor P T Pau"

Ligand binding sites within proteins can interact by allosteric mechanisms to modulate binding affinities and control protein function. Here we present crystal structures of the regulator of K+ conductance (RCK) domain from a K+ channel, MthK, which reveal the structural basis of allosteric coupling between two Ca2+ regulatory sites within the domain. Comparison of RCK domain crystal structures in a range of conformations and with different numbers of regulatory Ca2+ ions bound, combined with complementary electrophysiological analysis of channel gating, suggests chemical interactions that are important for modulation of ligand binding and subsequent channel opening.

View Article and Find Full Text PDF

RCK domains control activity of a variety of K(+) channels and transporters through binding of cytoplasmic ligands. To gain insight toward mechanisms of RCK domain activation, we solved the structure of the RCK domain from the Ca(2+)-gated K(+) channel, MthK, bound with Ba(2+), at 3.1 Å resolution.

View Article and Find Full Text PDF

Regulator of K(+) conductance (RCK) domains control the activity of a variety of K(+) transporters and channels, including the human large conductance Ca(2+)-activated K(+) channel that is important for blood pressure regulation and control of neuronal firing, and MthK, a prokaryotic Ca(2+)-gated K(+) channel that has yielded structural insight toward mechanisms of RCK domain-controlled channel gating. In MthK, a gating ring of eight RCK domains regulates channel activation by Ca(2+). Here, using electrophysiology and X-ray crystallography, we show that each RCK domain contributes to three different regulatory Ca(2+)-binding sites, two of which are located at the interfaces between adjacent RCK domains.

View Article and Find Full Text PDF

MthK is a Ca(2+)-gated K(+) channel whose activity is inhibited by cytoplasmic H(+). To determine possible mechanisms underlying the channel's proton sensitivity and the relation between H(+) inhibition and Ca(2+)-dependent gating, we recorded current through MthK channels incorporated into planar lipid bilayers. Each bilayer recording was obtained at up to six different [Ca(2+)] (ranging from nominally 0 to 30 mM) at a given [H(+)], in which the solutions bathing the cytoplasmic side of the channels were changed via a perfusion system to ensure complete solution exchanges.

View Article and Find Full Text PDF

KcsA, a potassium channel from Streptomyces lividans, was the first ion channel to have its transmembrane domain structure determined by crystallography. Previously we have shown that its C-terminal cytoplasmic domain is crucial for the thermostability and the expression of the channel. Expression was almost abolished in its absence, but could be rescued by the presence of an artificial left-handed coiled coil tetramerization domain GCN4.

View Article and Find Full Text PDF

The prokaryotic potassium channel from Streptomyces lividans, KcsA, is the first channel that has a known crystal structure of the transmembrane domain. The crystal structure of its soluble C-terminal domain, however, still remains elusive. Biophysical and electrophysiological studies have previously implicated the essential roles of the C-terminal domain in pH sensing and in vivo channel assembly.

View Article and Find Full Text PDF

KcsA, a potassium channel from Streptomyces lividans, is a good model for probing the general working mechanism of potassium channels. To date, the physiological activator of KcsA is still unknown, but in vitro studies showed that it could be opened by lowering the pH of the cytoplasmic compartment to 4. The C-terminal domain (CTD, residues 112-160) was proposed to be the modulator for this pH-responsive event.

View Article and Find Full Text PDF