The ability to design artificial extracellular matrices as cell-instructive scaffolds has opened the door to technologies capable of studying the fate of cells in vitro and to guiding tissue repair in vivo. One main component of the design of artificial extracellular matrices is the incorporation of biochemical cues to guide cell phenotype and multicellular organization. The extracellular matrix (ECM) is composed of a heterogeneous mixture of proteins that present a variety of spatially discrete signals to residing cell populations.
View Article and Find Full Text PDFAn understanding of parameters that modulate gene transfer in 3-D will assist in the formation of gene delivery systems and scaffolds, which can mediate efficient non-viral delivery for guiding in vivo tissue regeneration and therapy. We have previously demonstrated the cell area and length, integrin expression, and RhoGTPase mediated signalling to be pivotal parameters that guide gene transfer to mouse mesenchymal stem cells (mMSCs) cultured in 2-D and are modulated by ECM proteins. In this study, we were interested in determining if cationic polymer mediated gene transfer to cells seeded in 3-D would occur through different mechanisms as compared to those seeded in 2-D.
View Article and Find Full Text PDF