Publications by authors named "Victor Omojola"

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.

View Article and Find Full Text PDF

Cysteine cathepsins are potent proteases implicated in cardiovascular disease for degrading extracellular matrix (ECM) whose structure and integrity determine the mechanical behavior of arteries. Cathepsin knockout mouse models fed atherogenic diets have been used to study their roles in cardiovascular disease, but the impacts of cathepsin knockout on non-atherosclerotic arterial mechanics are scarce. We examine arterial mechanics in several cathepsin knockout mouse lines (CatK, CatLApoE and CatSApoE) and controls (C57/Bl6, apolipoprotein E).

View Article and Find Full Text PDF

To define morphological changes in carotid and cerebral arteries in sickle cell transgenic mice (SS) as they age, a combination of ultrasound and microcomputed tomography of plastinated arteries was used to quantify arterial dimensions and changes in mice 4, 12, and 24 weeks of age. 12-week SS mice had significantly larger common carotid artery diameters than AS mice, which continued through to the extracranial and intracranial portions of the internal carotid artery (ICA). There were also side specific differences in diameters between the left and right vessels.

View Article and Find Full Text PDF

Objective: Sickle cell anemia (SCA) causes chronic inflammation and multiorgan damage. Less understood are the arterial complications, most evident by increased strokes among children. Proteolytic mechanisms, biomechanical consequences, and pharmaceutical inhibitory strategies were studied in a mouse model to provide a platform for mechanistic and intervention studies of large artery damage due to sickle cell disease.

View Article and Find Full Text PDF

A microfluidic chip is described that facilitates research and quality control analysis of zebrafish sperm which, due to its miniscule (i.e., 2-5 μl) sample volume and short duration of motility (i.

View Article and Find Full Text PDF