Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments.
View Article and Find Full Text PDFBoosting the transport and selectivity properties of membranes based on polymers of intrinsic microporosity (PIMs) toward one specific working analyte of interest is challenging. In this work, a novel family of PIM membranes, prepared by casting and exhibiting optima mechanical properties and high thermal stability, was synthesized from 4,4'-(2,2,2-trifluoro-1-phenylethane-1,1-diyl) bis(benzene-1,2-diol) and two tetrafluoro-nitrile derivatives. Gas permeability measurements evidenced a CO/CH selectivity up to 170% relative to the reference polymer, PIM-1, in agreement with their calculated fractional free volume and the analysis of the textural properties by N and CO gas adsorption.
View Article and Find Full Text PDFBiodegradable blends based on plasticized poly(lactic acid) PLA and thermoplastic starch (TPS) have been obtained. The influence of the PLA plasticizer as a compatibility agent has been studied by using two different plasticizers such as neat oligomeric lactic acid (OLA) and functionalized with maleic acid (mOLA). In particular, the morphological, thermal, and mechanical properties have been studied as well as the shape memory ability of the melt-processed materials.
View Article and Find Full Text PDFThe research of starch as a matrix material for manufacturing biodegradable films has been gaining popularity in recent years, indicating its potential and possible limitations. To compete with conventional petroleum-based plastics, an enhancement of their low resistance to water and limited mechanical properties is essential. This review aims to discuss the various types of nanofillers and additives that have been used in plasticized starch films including nanoclays (montmorillonite, halloysite, kaolinite, etc.
View Article and Find Full Text PDF