Cadmium (Cd) stress is a significant environmental pollutant that can negatively impact crop yield and growth, and is a serious global issue. However, silicon (Si) has been shown to have a potential function in alleviating the effects of several abiotic stress conditions on crops, including Cd stress. This study investigated the effectiveness of applying silicon to soil as a method for reducing cadmium toxicity in pearl millet (IP14599) seedlings.
View Article and Find Full Text PDFSalt is regarded as a main cause for reduced yield under challenging conditions. Mungbean, a valuable protein crop, is sensitive to salt stress, leading to yield shortage. The growth hormone, salicylic acid (SA), enhances several processes necessary to confer salt tolerance and relieves poor agricultural yield.
View Article and Find Full Text PDFArsenic, a non-nutrient metalloid is toxic to plants but many details on the physiology of plant adaptation to arsenic stress are not well understood. This work provides new insights about the role of sulfur assimilation in arsenate uptake, growth and arsenic tolerance. Research reported here indicates that two high affinity sulfate transporters in Arabidopsis thaliana are not involved in root uptake of arsenate.
View Article and Find Full Text PDF