The emergence of superconductivity in doped insulators such as cuprates and pnictides coincides with their doping-driven insulator-metal transitions. Above the critical doping threshold, a metallic state sets in at high temperatures, while superconductivity sets in at low temperatures. An unanswered question is whether the formation of Cooper pairsin a well-established metal will inevitably transform the host material into a superconductor, as manifested by a resistance drop.
View Article and Find Full Text PDFIn light of the emergence of nonclassical effects, a paradigm shift in the conventional macroscopic treatment is required to accurately describe the interaction between light and plasmonic structures with deep-nanometer features. Towards this end, several nonlocal response models, supplemented by additional boundary conditions, have been introduced, investigating the collective motion of the free electron gas in metals. The study of the dipole-excited core-shell nanoparticle has been performed, by employing the following models: the hard-wall hydrodynamic model; the quantum hydrodynamic model; and the generalized nonlocal optical response.
View Article and Find Full Text PDFFlux quantization has been widely regarded as the hallmark of the macroscopic quantum state of superconductivity. However, practical design of superconductor devices exploiting finite size confinement effects may induce exotic phenomena, including nonquantized vortices. In our research, the magnetic flux of vortices has been studied in a series of superconducting strips as a function of the strip width and the penetration depth.
View Article and Find Full Text PDFCrystalline and amorphous structures are two of the most common solid-state phases. Crystals having orientational and periodic translation symmetries are usually both short-range and long-range ordered, while amorphous materials have no long-range order. Short-range ordered but long-range disordered materials are generally categorized into amorphous phases.
View Article and Find Full Text PDFThe combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydrogenated boron-doped diamond, which promises to be an attractive system with which to explore unconventional physics. Here, we show the emergence of Yu-Shiba-Rusinov (YSR) bands with a spatial extent of tens of nanometers in ferromagnetic superconducting diamond using scanning tunneling spectroscopy.
View Article and Find Full Text PDFManipulation of light below the diffraction limit forms the basis of nanophotonics. Metals can confine light at the subwavelength scale but suffer from high loss of energy. Recent reports have theoretically demonstrated the possibility of light confinement below the diffraction limit using transparent dielectric metamaterials.
View Article and Find Full Text PDFDesign and manipulation of magnetic moment arrays have been at the focus of studying the interesting cooperative physical phenomena in various magnetic systems. However, long-range ordered magnetic moments are rather difficult to achieve due to the excited states arising from the relatively weak exchange interactions between the localized moments. Here, using a nanostructured superconductor, we investigate a perfectly ordered magnetic dipole pattern with the magnetic poles having the same distribution as the magnetic charges in an artificial spin ice.
View Article and Find Full Text PDFWe demonstrate the in situ engineering of superconducting nanocircuitry by targeted modulation of material properties through high applied current densities. We show that the sequential repetition of such customized electro-annealing in a niobium (Nb) nanoconstriction can broadly tune the superconducting critical temperature T and the normal-state resistance R in the targeted area. Once a sizable R is reached, clear magneto-resistance oscillations are detected along with a Fraunhofer-like field dependence of the critical current, indicating the formation of a weak link but with further adjustable characteristics.
View Article and Find Full Text PDFNematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of BaKFeAs single crystals.
View Article and Find Full Text PDFIn the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers.
View Article and Find Full Text PDFSubwavelength optical resonators and scatterers are dramatically expanding the toolset of the optical sciences and photonics engineering. By offering the opportunity to control and shape light waves in nanoscale volumes, recent developments using high-refractive-index dielectric scatterers gave rise to efficient flat-optical components such as lenses, polarizers, phase plates, color routers, and nonlinear elements with a subwavelength thickness. In this work, we take a deeper look into the unique interaction of light with rod-shaped amorphous silicon scatterers by tapping into their resonant modes with a localized subwavelength light source-an aperture scanning near-field probe.
View Article and Find Full Text PDFDirectional antennas revolutionized modern day telecommunication by enabling precise beaming of radio and microwave signals with minimal loss of energy. Similarly, directional optical nanoantennas are expected to pave the way toward on-chip wireless communication and information processing. Currently, on-chip integration of such antennas is hampered by their multielement design or the requirement of complicated excitation schemes.
View Article and Find Full Text PDFWith the development of nanotechnologies, researchers have brought the concept of antenna to the optical regime for manipulation of nano-scaled light matter interactions. Most optical nanoantennas optimize optical function, but are not electrically connected. In order to realize functions that require electrical addressing, optical nanoantennas that are electrically continuous are desirable.
View Article and Find Full Text PDFQuantized vortices, as topological defects, play an important role in both physics and technological applications of superconductors. Normally, the nucleation of vortices requires the presence of a high magnetic field or current density, which allow the vortices to enter from the sample boundaries. At the same time, the controllable generation of individual vortices inside a superconductor is still challenging.
View Article and Find Full Text PDFSuperconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T ∼ 3 K and a Curie temperature T > 400 K.
View Article and Find Full Text PDFThe main dissipation mechanism in superconducting nanowires arises from phase slips. Thus far, most of the studies focus on long nanowires where coexisting events appear randomly along the nanowire. In the present work we investigate highly confined phase slips at the contact point of two superconducting leads.
View Article and Find Full Text PDFPolarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms.
View Article and Find Full Text PDFVortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution.
View Article and Find Full Text PDFSuperconducting nanowires currently attract great interest due to their application in single-photon detectors and quantum-computing circuits. In this context, it is of fundamental importance to understand the detrimental fluctuations of the superconducting order parameter as the wire width shrinks. In this paper, we use controlled electromigration to narrow down aluminium nanoconstrictions.
View Article and Find Full Text PDFThe determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors.
View Article and Find Full Text PDFA radio-frequency coil for the experimental investigation of the magnetic properties of thin superconducting films under microwave fields at different values of temperature and dc magnetic field has been developed. The system has been used for low-temperature microwave frequency-dependent magnetization measurements in a Pb thin film with an engineered periodical antidot array. The characteristic frequencies and the electric and magnetic fields of the resonant system formed by a multi-turn coil with a sample loaded in its core are estimated using the helical approach.
View Article and Find Full Text PDFThe response of superconducting devices to electromagnetic radiation is a core concept implemented in diverse applications, ranging from the currently used voltage standard to single photon detectors in astronomy. Suprisingly, a sufficiently high power subgap radiation may stimulate superconductivity itself. The possibility of stimulating type II superconductors, in which the radiation may interact also with vortex cores, remains however unclear.
View Article and Find Full Text PDFOne of the phenomena that make superconductors unique materials is the Meissner-Ochsenfeld effect. This effect results in a state in which an applied magnetic field is expelled from the bulk of the material because of the circulation near its surface of resistance-free currents, also known as Meissner currents. Notwithstanding the intense research on the Meissner state, local fields due to the interaction of Meissner currents with pinning centres have not received much attention.
View Article and Find Full Text PDF