CD20 is an established therapeutic target in B-cell malignancies. The CD20 × CD3 bispecific antibody mosunetuzumab has significant efficacy in B-cell non-Hodgkin lymphomas (NHLs). Because target antigen loss is a recognized mechanism of resistance, we evaluated CD20 expression relative to clinical response in patients with relapsed and/or refractory NHL in the phase 1/2 GO29781 trial investigating mosunetuzumab monotherapy.
View Article and Find Full Text PDFMonocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1β in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1β/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression.
View Article and Find Full Text PDFGD2-targeting immunotherapies have improved survival in children with neuroblastoma, yet on-target, off-tumor toxicities can occur and a subset of patients cease to respond. The majority of neuroblastoma patients who receive immunotherapy have been previously treated with cytotoxic chemotherapy, making it paramount to identify neuroblastoma-specific antigens that remain stable throughout standard treatment. Cell surface glycoproteomics performed on human-derived neuroblastoma tumors in mice following chemotherapy treatment identified protein tyrosine kinase 7 (PTK7) to be abundantly expressed.
View Article and Find Full Text PDFFollowing chemotherapy and relapse, high-risk neuroblastoma tumors harbor more genomic alterations than at diagnosis, including increased transcriptional activity of the Yes-associated protein (YAP), a key downstream component of the Hippo signaling network. Although YAP has been implicated in many cancer types, its functional role in the aggressive pediatric cancer neuroblastoma is not well-characterized. In this study, we performed genetic manipulation of YAP in human-derived neuroblastoma cell lines to investigate YAP function in key aspects of the malignant phenotype, including mesenchymal properties, tumor growth, chemotherapy response, and MEK inhibitor response.
View Article and Find Full Text PDFGlioblastoma is the most common and uncompromising primary brain tumour and is characterized by a dismal prognosis despite aggressive treatment regimens. At the cellular level, these tumours are composed of a mixture of neoplastic cells and non-neoplastic cells, including tumour-associated macrophages and endothelial cells. Cerebral oedema is a near-universal occurrence in patients afflicted with glioblastoma and it is almost exclusively managed with the corticosteroid dexamethasone despite significant drawbacks associated with its use.
View Article and Find Full Text PDFMedulloblastoma is a malignant pediatric tumor that arises from neural progenitors in the cerebellum. Despite a five-year survival rate of ~70%, nearly all patients incur adverse side effects from current treatment strategies that drastically impact quality of life. Roughly one-third of medulloblastoma are driven by aberrant activation of the Sonic Hedgehog (SHH) signaling pathway.
View Article and Find Full Text PDFMedulloblastoma, which is the most common malignant paediatric brain tumour, has a 70% survival rate, but standard treatments often lead to devastating life-long side effects and recurrence is fatal. One of the emerging strategies in the search for treatments is to determine the roles of tumour microenvironment cells in the growth and maintenance of tumours. The most attractive target is tumour-associated macrophages (TAMs), which are abundantly present in the Sonic Hedgehog (SHH) subgroup of medulloblastoma.
View Article and Find Full Text PDFCerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstream effectors of mitogenic signaling are still being elucidated. Using primary CGNP cultures, a well-established model for SHH-driven proliferation, we show that SHH-treated CGNPs feature high levels of hypoxia-inducible factor 1α (HIF1α), which is known to promote glycolysis, stemness, and angiogenesis.
View Article and Find Full Text PDFMedulloblastomas, the most common malignant pediatric brain tumors, have been genetically defined into four subclasses, namely WNT-activated, Sonic Hedgehog (SHH)-activated, Group 3, and Group 4. Approximately 30% of medulloblastomas have aberrant SHH signaling and thus are referred to as SHH-activated medulloblastoma. The tumor suppressor gene has been recently recognized as a prognostic marker for patients with SHH-activated medulloblastoma; patients with mutant TP53 have a significantly worse outcome than those with wild-type TP53.
View Article and Find Full Text PDFStroke is one of the major causes of death and disability in the United States. After cerebral ischemia and reperfusion injury, the generation of reactive oxygen species (ROS) and reactive nitrogen species may contribute to the disease process through alterations in the structure of DNA, RNA, proteins, and lipids. We generated various nanoparticles (liposomes, polybutylcyanoacrylate (PBCA), or poly(lactide-co-glycolide) (PLGA)) that contained active superoxide dismutase (SOD) enzyme (4,000 to 20,000 U/kg) in the mouse model of cerebral ischemia and reperfusion injury to determine the impact of these molecules.
View Article and Find Full Text PDFPoly(butyl cyanoacrylate) (PBCA) nanoparticles (NPs) can penetrate blood-brain barrier providing the means for drug delivery to the central nervous system. Here, we study attachment of superoxide dismutase (SOD) and anti-glutamate N-methyl D-aspartate receptor 1 (NR1) antibody to PBCA NPs with the ultimate goal to design neuroprotective therapeutics for treatment of secondary spinal cord injury. Synthesis of monodispersed, ∼200 nm-diameter PBCA NPs was performed using polymerization at pH 2.
View Article and Find Full Text PDFEnzymes hold a great promise as therapeutic agents because of their unique specificity and high level of activity. Yet, clinically important enzyme drugs are for less common than conventional low molecular weight drugs due to a number of disadvantages. Most important among these are poor stability, potential immunogenicity, and potential systemic toxicity.
View Article and Find Full Text PDF