Recent advances in Deep Learning and aerial Light Detection And Ranging (LiDAR) have offered the possibility of refining the classification and segmentation of 3D point clouds to contribute to the monitoring of complex environments. In this context, the present study focuses on developing an ordinal classification model in forest areas where LiDAR point clouds can be classified into four distinct ordinal classes: ground, low vegetation, medium vegetation, and high vegetation. To do so, an effective soft labeling technique based on a novel proposed generalized exponential function (CE-GE) is applied to the PointNet network architecture.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
February 2024
Real-world classification problems may disclose different hierarchical levels where the categories are displayed in an ordinal structure. However, no specific deep learning (DL) models simultaneously learn hierarchical and ordinal constraints while improving generalization performance. To fill this gap, we propose the introduction of two novel ordinal-hierarchical DL methodologies, namely, the hierarchical cumulative link model (HCLM) and hierarchical-ordinal binary decomposition (HOBD), which are able to model the ordinal structure within different hierarchical levels of the labels.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
March 2023
Activation functions lie at the core of every neural network model from shallow to deep convolutional neural networks. Their properties and characteristics shape the output range of each layer and, thus, their capabilities. Modern approaches rely mostly on a single function choice for the whole network, usually ReLU or other similar alternatives.
View Article and Find Full Text PDF