Philos Trans A Math Phys Eng Sci
May 2022
The first part of this paper is a brief survey of the approaches to economic inequality based on ideas from statistical physics and kinetic theory. These include the Boltzmann kinetic equation, the time-reversal symmetry, the ergodicity hypothesis, entropy maximization and the Fokker-Planck equation. The origins of the exponential Boltzmann-Gibbs distribution and the Pareto power law are discussed in relation to additive and multiplicative stochastic processes.
View Article and Find Full Text PDFIn 1928, Dirac proposed a wave equation to describe relativistic electrons. Shortly afterwards, Klein solved a simple potential step problem for the Dirac equation and encountered an apparent paradox: the potential barrier becomes transparent when its height is larger than the electron energy. For massless particles, backscattering is completely forbidden in Klein tunnelling, leading to perfect transmission through any potential barrier.
View Article and Find Full Text PDFWe report anomalous enhancement of the critical current at low temperatures in gate-tunable Josephson junctions made from topological insulator BiSbTeSe_{2} nanoribbons with superconducting Nb electrodes. In contrast to conventional junctions, as a function of the decreasing temperature T, the increasing critical current I_{c} exhibits a sharp upturn at a temperature T_{*} around 20% of the junction critical temperature for several different samples and various gate voltages. The I_{c} vs T demonstrates a short junction behavior for T>T_{*}, but crosses over to a long junction behavior for T
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer.
View Article and Find Full Text PDFOver the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences.
View Article and Find Full Text PDFWe propose a novel chiral order parameter to explain the unusual polar Kerr effect in underdoped cuprates. It is based on the loop-current model by Varma, which is characterized by the in-plane anapole moment N and exhibits the magnetoelectric effect. We propose a helical structure where the vector N(n) in the layer n is twisted by the angle π/2 relative to N(n-1), thus breaking inversion symmetry.
View Article and Find Full Text PDFWe study the Andreev bound states in a Josephson junction between a singlet and a triplet superconductors. Because of the mismatch in the spin symmetries of pairing, the energies of the spin-up and -down quasiparticles are generally different. This results in imbalance of spin populations and net spin accumulation at the junction in equilibrium.
View Article and Find Full Text PDFIt was proposed that the id(x(2)-y(2)) density-wave state (DDW) may be responsible for the pseudogap behavior in the underdoped cuprates. Here we show that the admixture of a small d(xy) component to the DDW state breaks the symmetry between the counterpropagating orbital currents of the DDW state and, thus, violates the macroscopic time-reversal symmetry. This symmetry breaking results in a nonzero polar Kerr effect, which has recently been observed in the pseudogap phase.
View Article and Find Full Text PDFPhys Rev Lett
February 2007
The optical Hall conductivity and the polar Kerr angle are calculated as functions of temperature for a two-dimensional chiral p(x) + ip(y) superconductor, where the time-reversal symmetry is spontaneously broken. The theoretical estimate for the polar Kerr angle agrees by the order of magnitude with the recent experimental measurement in Sr2RuO4 by Xia et al. [Phys.
View Article and Find Full Text PDFDifferent types of angular magnetoresistance oscillations in quasi-one-dimensional layered materials, such as organic conductors (TMTSF)2X, are explained in terms of Aharonov-Bohm interference in interlayer electron tunneling. A two-parameter pattern of oscillations for generic orientations of a magnetic field is visualized and compared to the experimental data. Connections with angular magnetoresistance oscillations in other layered materials are discussed.
View Article and Find Full Text PDFLow-temperature thermodynamic properties of strongly interacting Fermi liquids with a fermion condensate are investigated. We demonstrate that the spin susceptibility of these systems exhibits the Curie-Weiss law, and the entropy contains a temperature-independent term. The excessive entropy is released at the superconducting transition, enhancing the specific heat jump deltaC and rendering it proportional to the effective Curie constant.
View Article and Find Full Text PDFWe study the quantum critical behavior in an isotropic Fermi liquid in the vicinity of a zero-temperature density-wave transition at a finite wave vector qc. We show that, near the transition, the Landau damping of the soft bosonic mode yields a crossover in the fermionic self-energy from Sigma(k,omega) approximately Sigma(k) to Sigma(k,omega) approximately Sigma(omega), where k and omega are momentum and frequency. Because of this self-generated locality, the fermionic effective mass diverges right at the quantum critical point, not before; i.
View Article and Find Full Text PDFWe consider a one-dimensional superconducting wire where the total number of electrons can be controlled in the Coulomb blockade regime. We predict that a pi soliton (kink) will spontaneously form in the system when the number of electrons is odd, because this configuration has a lower energy. If the wire with an odd number of electrons is closed in a ring, the phase difference on the two sides of the soliton will generate a supercurrent detectable by a SQUID.
View Article and Find Full Text PDF