Background: Alzheimer's disease (AD) and a host of other neurodegenerative central nervous system (CNS) proteinopathies are characterized by the accumulation of misfolded protein aggregates. Simplistically, these aggregates can be divided into smaller, soluble, oligomeric and larger, less-soluble or insoluble, fibrillar forms. Perhaps the major ongoing debate in the neurodegenerative disease field is whether the smaller oligomeric or larger fibrillar aggregates are the primary neurotoxin.
View Article and Find Full Text PDFAnalyses of the biologic effects of mutations in the BRI2 (ITM2b) and the amyloid beta precursor protein (APP) genes support the hypothesis that cerebral accumulation of amyloidogenic peptides in familial British and familial Danish dementias and Alzheimer's disease (AD) is associated with neurodegeneration. We have used somatic brain transgenic technology to express the BRI2 and BRI2-Abeta1-40 transgenes in APP mouse models. Expression of BRI2-Abeta1-40 mimics the suppressive effect previously observed using conventional transgenic methods, further validating the somatic brain transgenic methodology.
View Article and Find Full Text PDFIn SCF (Skp1/Cullin/F-box protein) ubiquitin ligases, substrate specificity is conferred by a diverse array of F-box proteins. Only in fully assembled SCF complexes, it is believed, can substrates bound to F-box proteins become ubiquitinated. Here we show that Fbx2, a brain-enriched F-box protein implicated in the ubiquitination of glycoproteins discarded from the endoplasmic reticulum, binds the co-chaperone/ubiquitin ligase CHIP (C terminus of Hsc-70-interacting protein) through a unique N-terminal PEST domain in Fbx2.
View Article and Find Full Text PDF1.RNA interference (RNAi) is a recently discovered biological pathway that mediates post-transcriptional gene silencing. The process of RNAi is orchestrated by an increasingly well-understood cellular machinery.
View Article and Find Full Text PDFHuntington's disease (HD) and other polyglutamine (polyQ) neurodegenerative diseases are characterized by neuronal accumulation of the disease protein, suggesting that the cellular ability to handle abnormal proteins is compromised. As both a cochaperone and ubiquitin ligase, the C-terminal Hsp70 (heat shock protein 70)-interacting protein (CHIP) links the two major arms of protein quality control, molecular chaperones, and the ubiquitin-proteasome system. Here, we demonstrate that CHIP suppresses polyQ aggregation and toxicity in transfected cell lines, primary neurons, and a novel zebrafish model of disease.
View Article and Find Full Text PDFGenetic defects in DNA repair are increasingly recognized as being able to cause degenerative ataxia syndromes. It remains a mystery, however, why disruption of a process fundamental to proliferating cells can be selectively toxic to postmitotic neurons. Recent studies now reveal that an ataxia gene, tyrosyl phosphodiesterase 1 (TDP1), repairs single-stranded DNA breaks in nondividing cells.
View Article and Find Full Text PDFTau and amyloid precursor protein (APP) are key proteins in the pathogenesis of sporadic and inherited Alzheimer's disease. Thus, developing ways to inhibit production of these proteins is of great research and therapeutic interest. The selective silencing of mutant alleles, moreover, represents an attractive strategy for treating inherited dementias and other dominantly inherited disorders.
View Article and Find Full Text PDFA three-nucleotide (GAG) deletion in the TOR1A gene is the most common cause of inherited dystonia, DYT1. Because the mutant protein, TorsinA (TA), is thought to act in a dominant manner to cause disease, inhibiting expression from the mutant gene represents a potentially powerful therapeutic strategy. In an effort to develop therapy for this disease, we tested whether small interfering RNA (siRNA) could selectively silence expression of mutant TA.
View Article and Find Full Text PDFSmall interfering RNA (siRNA) holds therapeutic promise for silencing dominantly acting disease genes, particularly if mutant alleles can be targeted selectively. In mammalian cell models we demonstrate that allele-specific silencing of disease genes with siRNA can be achieved by targeting either a linked single-nucleotide polymorphism (SNP) or the disease mutation directly. For a polyglutamine neurodegenerative disorder in which we first determined that selective targeting of the disease-causing CAG repeat is not possible, we took advantage of an associated SNP to generate siRNA that exclusively silenced the mutant Machado-Joseph disease/spinocerebellar ataxia type 3 allele while sparing expression of the WT allele.
View Article and Find Full Text PDFProtein misfolding and aggregation are central features of the polyglutamine neurodegenerative disorders, but the dynamic properties of expanded polyglutamine proteins are poorly understood. Here, we use fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) with green fluorescent protein fusion proteins to study polyglutamine protein kinetics in living cells. Our results reveal markedly divergent mobility states for an expanded polyglutamine protein, ataxin-3, and establish that nuclear inclusions formed by this protein are aggregates.
View Article and Find Full Text PDF