Publications by authors named "Victor Lopo-Martinez"

Peripheral Electrical Stimulation (PES) of afferent pathways has received increased interest as a solution to reduce pathological tremors with minimal side effects. Closed-loop PES systems might present some advantages in reducing tremors, but further developments are required in order to reliably detect pathological tremors to accurately enable the stimulation only if a tremor is present. This study explores different machine learning (K-Nearest Neighbors, Random Forest and Support Vector Machines) and deep learning (Long Short-Term Memory neural networks) models in order to provide a binary (; ) classification of kinematic (angle displacement) and electromyography (EMG) signals recorded from patients diagnosed with essential tremors and healthy subjects.

View Article and Find Full Text PDF

Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients.

View Article and Find Full Text PDF