This paper presents the results of ceramic synthesis in the field of a powerful flux of high-energy electrons on powder mixtures. The synthesis is carried out via the direct exposure of the radiation flux to a mixture with high speed (up to 10 g/s) and efficiency without the use of any methods or means for stimulation. These synthesis qualities provide the opportunity to optimize compositions and conditions in a short time while maintaining the purity of the ceramics.
View Article and Find Full Text PDFIn this work, we present the results of the structure and luminescence properties of YAG:Ce (YAlO doped with Ce ions) ceramic samples. Their synthesis was carried out by sintering samples from the initial oxide powders under the powerful action of a high-energy electron beam with an energy of 1.4 MeV and a power density of 22-25 kW/cm.
View Article and Find Full Text PDFSynthesis in the radiation field is a promising direction for the development of materials transformation processes, especially those differing in melting temperature. It has been established that the synthesis of yttrium-aluminum ceramics from yttrium oxides and aluminum metals in the region of a powerful high-energy electron flux is realized in 1 s, without any manifestations that facilitate synthesis, with high productivity. It is assumed that the high rate and efficiency of synthesis are due to processes that are realized with the formation of radicals, short-lived defects formed during the decay of electronic excitations.
View Article and Find Full Text PDFYAG:Ce ceramics by the direct action of an electron beam with 1.4 MeV energy were synthesized on a mixture of a stoichiometric composition of Y, Al, and Ce oxides without adding any substances to facilitate the process. The synthesis is realized in a time less than 1 s.
View Article and Find Full Text PDF