Publications by authors named "Victor Lien"

We have demonstrated a microfluidic device that can not only achieve three-dimensional flow focusing but also confine particles to the center stream along the channel. The device has a sample channel of smaller height and two sheath flow channels of greater height, merged into the downstream main channel where 3D focusing effects occur. We have demonstrated that both beads and cells in our device display significantly lower CVs in velocity and position distributions as well as reduced probability of coincidental events than they do in conventional 2D-confined microfluidic channels.

View Article and Find Full Text PDF

We demonstrate an integrated microfluidic flow sensor with ultra-wide dynamic range, suitable for high throughput applications such as flow cytometry and particle sorting/counting. A fiber-tip cantilever transduces flow rates to optical signal readout, and we demonstrate a dynamic range from 0 to 1500 microL min(-1) for operation in water. Fiber-optic sensor alignment is guided by preformed microfluidic channels, and the dynamic range can be adjusted in a one-step chemical etch.

View Article and Find Full Text PDF

High-performance fluidic lenses with an adjustable focal length spanning a very wide range (30 mm to infinite) are demonstrated. We show that the focal length, F-number, and numerical aperture can be dynamically controlled by changing the shape of the fluidic adaptive lens without moving the lens position mechanically. The shortest focal length demonstrated is less than 30 mm for a 20-mm lens aperture.

View Article and Find Full Text PDF