Publications by authors named "Victor Levenson"

Prolyl endopeptidase (PREP), also known as prolyl oligopeptidase (POP), is an enzyme that cleaves short peptides (<30 amino acids in length) on the C-terminal side of proline. PREP is highly expressed in multiple carcinomas and is a potential target for cancer therapy. A potent inhibitor of PREP, Y-29794, causes long-lasting inhibition of PREP in mouse tissues.

View Article and Find Full Text PDF

Background: DNA methylation regulates gene expression, through the inhibition/activation of gene transcription of methylated/unmethylated genes. Hence, DNA methylation profiling can capture pivotal features of gene expression in cancer tissues from patients at the time of diagnosis. In this work, we analyzed a breast cancer case series, to identify DNA methylation determinants of metastatic versus non-metastatic tumors.

View Article and Find Full Text PDF

Autophagy is a mechanism of tamoxifen (TAM) resistance in ER-positive (ER+) breast cancer cells. In this study, we showed in ER+ MCF7 cells that 4-hydroxytamoxifen (4OHTAM) induced cellular nitric oxide (NO) that negatively regulates cellular superoxide (O2-) and cytotoxicity. 4OHTAM stimulated LC3 lipidation and formation of monodansylcadaverine (MDC)-labeled autophagic vesicles dependent on O2-.

View Article and Find Full Text PDF

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells.

View Article and Find Full Text PDF

Profiling of DNA methylation status of specific genes is a way to screen for colorectal cancer (CRC) and pancreatic cancer (PC) in blood. The commonality of methylation status of cancer-related tumor suppressor genes between CRC and PC is largely unknown. Methylation status of 56 cancer-related genes was compared in plasma of patients in the following cohorts: CRC, PC and healthy controls.

View Article and Find Full Text PDF

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding.

View Article and Find Full Text PDF

Anti-EGFR therapy is among the most promising molecular targeted therapies against cancer developed in the past decade. However, drug resistance eventually arises in most, if not all, treated patients. Emerging evidence has linked epigenetic changes, such as DNA methylation at CpG islands, to the development of resistance to multiple anticancer drugs.

View Article and Find Full Text PDF

A recent expansion of our knowledge about epigenetic changes strongly suggests that epigenetic rather than genetic features better reflect disease development, and consequently, can become more conclusive biomarkers for the detection and diagnosis of different diseases. In this paper we will concentrate on the current advances in DNA methylation studies that demonstrate a direct link between abnormal DNA methylation and a disease. This link can be used to develop diagnostic biomarkers that will precisely identify a particular disease.

View Article and Find Full Text PDF

Early detection and diagnosis of a disease in its presymptomatic form has to rely on biomarkers, and multiple laboratories are involved in their development and validation. In this article, we describe our work on a platform technology for a genome-wide analysis of DNA methylation while still using a small amount of sample - a biopsy, a section from a formalin-fixed paraffin-embedded tissue or a small volume (0.4 ml) of plasma from blood.

View Article and Find Full Text PDF

Colorectal cancer (CRC) screening rates are currently suboptimal. Blood-based screening could improve rates of earlier detection for CRC and adenomatous colorectal polyps. In this study, we evaluated the feasibility of plasma-based detection of early CRC and adenomatous polyps using array-mediated analysis methylation profiling of 56 genes implicated in carcinogenesis.

View Article and Find Full Text PDF

Endocrine therapy with tamoxifen (TAM) significantly improves outcomes for patients with estrogen receptor-positive breast cancer. However, intrinsic (de novo) or acquired resistance to TAM occurs in a significant proportion of treated patients. To identify genes involved in resistance to TAM, we introduced full-length cDNA expression library into estrogen receptor-positive MCF7 cells and exposed them to a cytotoxic dose of 4-hydroxytamoxifen (4OHTAM).

View Article and Find Full Text PDF

Objective: Epithelial ovarian carcinoma (OvCa) is rarely detected early, and it is also difficult to determine whether an adnexal mass is benign or malignant. Previously, we noted differences in methylation patterns of cell-free plasma DNA (cfpDNA) in women without disease compared to patients with OvCa. In this work, we investigated whether methylation patterns of cfpDNA can differentiate between benign and malignant tumors.

View Article and Find Full Text PDF

Abnormal DNA methylation is a feature of most types of cancer, which is reflected in cell-free circulating DNA in plasma. It is, however, unknown whether surgical removal of the tumor and subsequent therapy induces changes in plasma DNA methylation, which can be used to monitor treatment. In this pilot study, methylation in cell-free plasma DNA of 20 breast cancer patients was determined by the previously developed MethDet-56 technique.

View Article and Find Full Text PDF

Cell-free circulating DNA carries not only tumor-specific changes in its sequence but also distinctive epigenetic marks, namely DNA methylation, in certain GC-rich fragments. These fragments are usually located within the promoters and first exons of many genes, comprising CpG islands. Analysis of DNA methylation using cell-free circulating DNA can facilitate development of very accurate biomarkers for detection, diagnosis, prediction of response to therapy and prognosis of outcomes.

View Article and Find Full Text PDF

Background: : Although patients with chronic pancreatitis (CP) have an increased risk of pancreatic cancer (PanCa), the timely detection of PanCa often is difficult, because the symptoms of CP and PanCa are very similar. Moreover, secondary inflammation may be identified in PanCa, further complicating diagnosis. To improve the survival of patients with PanCa, a reliable test to differentiate CP from PanCa is needed.

View Article and Find Full Text PDF

Background: There is growing interest for identification of new targets for biomarker development in multiple sclerosis (MS). The goal of this study was to compare the concentration and the methylation patterns of cell-free plasma DNA (cfpDNA) in patients with relapsing-remitting multiple sclerosis (RRMS) and healthy individuals.

Methods: Three 30-patient cohorts were examined: patients with RRMS, in either remission or exacerbation, and healthy individuals as controls.

View Article and Find Full Text PDF

Methylation of CpG islands in gene promoter regions is a major molecular mechanism of gene silencing and underlies both cancer development and progression. In molecular oncology, testing for the CpG methylation of tissue DNA has emerged as a clinically useful tool for tumor detection, outcome prediction, and treatment selection, as well as for assessing the efficacy of treatment with the use of demethylating agents and monitoring for tumor recurrence. In addition, because CpG methylation occurs early in pre-neoplastic tissues, methylation tests may be useful as markers of cancer risk in patients with either infectious or inflammatory conditions.

View Article and Find Full Text PDF

An accurate biomarker for detection of ovarian cancer may reduce cancer-related mortality. Using a previously developed microarray-based technique, we evaluated differences in DNA methylation profiles in a panel of 56 genes using sections of serous papillary adenocarcinomas and uninvolved ovaries (n=30) from women in a high-risk group. Methylation profiles were also generated for circulating DNA from blood of patients (n=33) and healthy controls (n=33).

View Article and Find Full Text PDF

Background And Objectives: Detection of pancreatic cancer by blood-based test may improve outcomes. We sought to establish the feasibility of a blood-based detection of pancreatic cancer through multiplexed array-mediated analysis of DNA methylation.

Methods: Methylation was assessed in each plasma sample using a panel of 56 frequently methylated genes.

View Article and Find Full Text PDF

Abnormal DNA methylation is well established for cancer cells, but a methylation-based diagnostic test is yet to be developed. One of the problems is insufficient accuracy of cancer detection in heterogeneous clinical specimens when only a single gene is analyzed. A new technique was developed to produce a multigene methylation signature in each sample, and its potential for selection of informative genes was tested using DNA from formalin-fixed, paraffin-embedded breast cancer tissues.

View Article and Find Full Text PDF

Early detection of breast cancer reduces the suffering and cost to society associated with the disease. A sensitive assay to identify biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. The earlier and more accurate the diagnostic biomarker can predict disease onset, the more valuable it becomes.

View Article and Find Full Text PDF

While different markers for cancer diagnosis have been known for at least a decade, the systematic search for biomarkers emerged only several years ago. In this article, I will concentrate on DNA methylation as a dynamic and robust platform for the development of cancer-specific biomarkers. Simultaneous analysis of a growing number of independent methylation events can create increasingly more precise and individualized diagnostics.

View Article and Find Full Text PDF