The transbilayer asymmetry of the biomembrane is generated due to the differences in lipid and protein compositions between two leaflets, which plays important roles in physiological functions. However, transbilayer asymmetry can also be originated due to a nonequal number of lipids or proteins in each leaflet, which has not been well recognized. Therefore, to shed light on this field, here we generated theoretical models for the effect of transbilayer asymmetry originated from the differences in the number of lipids and peptides in each leaflet on the state of lipid bilayers.
View Article and Find Full Text PDFAntimicrobial peptide magainin 2 forms pores in lipid bilayers, a property that is considered the main cause of its bactericidal activity. Recent data suggest that tension or stretching of the inner monolayer plays an important role in magainin 2-induced pore formation in lipid bilayers. Here, to elucidate the mechanism of magainin 2-induced pore formation, we investigated the effect on pore formation of asymmetric lipid distribution in two monolayers.
View Article and Find Full Text PDFEntry of cell-penetrating peptides (CPPs) into living cells by translocating across plasma membranes is an important physiological phenomenon. To elucidate the mechanism of the translocation of CPPs across lipid bilayers, it is essential to reveal its elementary processes. For this purpose, here, we have developed a new method for the continuous, quantitative detection of the entry of CPPs into giant unilamellar vesicles (GUVs), where we investigate the interaction of fluorescent probe-labeled CPPs with single GUVs containing large unilamellar vesicles (LUVs) and fluorescent probes in their lumens using confocal microscopy.
View Article and Find Full Text PDFThe translocation of cell-penetrating peptides (CPPs) through plasma membranes of living cells is an important physiological phenomenon in biomembranes. To reveal the mechanism underlying the translocation of a CPP, transportan 10 (TP10), through lipid bilayers, we examined the effects of the mechanical properties of lipid bilayers on the entry of carboxyfluorescein (CF)-labeled TP10 (CF-TP10) into a giant unilamellar vesicle (GUV) using the single GUV method. First, we examined the effect of lateral tension in membranes on the entry of CF-TP10 into single GUVs comprising a mixture of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) (2/8).
View Article and Find Full Text PDFThe stretching of biomembranes and lipid membranes plays important roles in various physiological and physicochemical phenomena. Here we analyzed the rate constant kp of constant tension-induced rupture of giant unilamellar vesicles (GUVs) as a function of tension σ using their activation energy Ua. To determine the values of kp, we applied constant tension to a GUV membrane using the micropipette aspiration method and observed the rupture of GUVs, and then analyzed these data statistically.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2015
We investigated the effects of electrostatic interactions on the rate constant (k(p)) for tension-induced pore formation in lipid membranes of giant unilamellar vesicles under constant applied tension. A decrease in salt concentration in solution as well as an increase in surface charge density of the membranes increased k(p). These data indicate that k(p) increases as the extent of electrostatic interaction increases.
View Article and Find Full Text PDF