Publications by authors named "Victor Kreiner"

Article Synopsis
  • Intrathecal IgM production in multiple sclerosis (MS) is correlated with a more severe disease progression.
  • Researchers analyzed cerebrospinal fluid (CSF) from MS patients and controls to identify autoreactive IgM antibodies, discovering that about 10% of MS patients had unique IgM binding profiles.
  • One specific IgM antibody was linked to increased immune cell activity in the brain and was found to target a protein called SCARA5, suggesting that IgM may play a role in promoting inflammation in MS.
View Article and Find Full Text PDF

Motivation: The maturation of systems immunology methodologies requires novel and transparent computational frameworks capable of integrating diverse data modalities in a reproducible manner.

Results: Here, we present the ePlatypus computational immunology ecosystem for immunogenomics data analysis, with a focus on adaptive immune repertoires and single-cell sequencing. ePlatypus is an open-source web-based platform and provides programming tutorials and an integrative database that helps elucidate signatures of B and T cell clonal selection.

View Article and Find Full Text PDF

Macrophages are involved in immune defense, organogenesis and tissue homeostasis. Macrophages contribute to the different phases of mammary gland remodeling during development, pregnancy and involution postlactation. Less is known about the dynamics of mammary gland macrophages in the lactation stage.

View Article and Find Full Text PDF

The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic β cells based on histone mark heterogeneity (β and β). β cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern.

View Article and Find Full Text PDF

Although new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion, and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of murine B cells following immunizations with a model therapeutic antigen target.

View Article and Find Full Text PDF

Motivation: Single-cell sequencing now enables the recovery of full-length immune receptor repertoires [B cell receptor (BCR) and T cell receptor (TCR) repertoires], in addition to gene expression information. The feature-rich datasets produced from such experiments require extensive and diverse computational analyses, each of which can significantly influence the downstream immunological interpretations, such as clonal selection and expansion. Simulations produce validated standard datasets, where the underlying generative model can be precisely defined and furthermore perturbed to investigate specific questions of interest.

View Article and Find Full Text PDF

Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF