Venom-induced hemorrhage analysis usually is performed by Minimum Hemorrhagic Dose (MHD), however a similar method can be used to compare venoms with fewer laboratory animals. Our work compared the MHD of five different venoms, with the size of hemorrhagic spot, finding good correlations in the results. Considering the 3Rs principle, we propose the use of the hemorrhagic spot method to compare hemorrhagic activity of snake venoms, rather than using the MHD method, since the first one needs 5 times less animals than the other.
View Article and Find Full Text PDFIn Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes' natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied.
View Article and Find Full Text PDFThis work compared the presence of phospholipase A inhibitors (PLIs) in the serum of 19 snake species maintained at Instituto Butantan to better understand the mechanisms of venom resistance in snakes and improve the treatment of snakebite. PLI was isolated from blood of 19 snake species by one-step chromatography and identified in all samples, besides its identity was confirmed through the interaction with both phospholipase A and anti-γPLI. These findings highlight the diversity of snake serum PLIs and emphasize the importance of structure-function studies.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
October 2020
Background: Variability in snake venoms is a well-studied phenomenon. However, sex-based variation of snake venom using siblings is poorly investigated. is responsible for the majority of snakebite accidents in the Brazilian Amazon region.
View Article and Find Full Text PDFPLoS One
May 2020
Plasma in several organisms has components that promote resistance to envenomation by inhibiting specific proteins from snake venoms, such as phospholipases A2 (PLA2s). The major hypothesis for inhibitor's presence would be the protection against self-envenomation in venomous snakes, but the occurrence of inhibitors in non-venomous snakes and other animals has opened new perspectives for this molecule. Thus, this study showed for the first time the structural and functional characterization of the PLA2 inhibitor from the Boa constrictor serum (BoaγPLI), a non-venomous snake that dwells extensively the Brazilian territory.
View Article and Find Full Text PDF