Objective: Histopathologic characteristics after neoadjuvant chemotherapy (NACT) may correlate with outcome. This study evaluates histopathologic features after immunotherapy and NACT/bevacizumab, and associated clinical outcomes.
Methods: Evaluable tissue from IMagyn050/GOG3015/ENGOT-ov39 patients from prespecified anatomic sites from interval cytoreductive surgery (ICS) after NACT/bevacizumab plus atezolizumab/placebo underwent central histopathologic scoring and analyzed with clinical outcomes.
Objective: To determine the impact on overall survival (OS) and patient-reported outcomes (PROs) of combining atezolizumab with standard therapy for newly diagnosed stage III/IV ovarian cancer.
Methods: The placebo-controlled double-blind randomized phase III IMagyn050/GOG 3015/ENGOT-OV39 trial (NCT03038100) assigned eligible patients to 3-weekly atezolizumab 1200 mg or placebo for 22 cycles with platinum-based chemotherapy and bevacizumab. Coprimary endpoints were progression-free survival (already reported) and OS in the PD-L1-positive and intent-to-treat (ITT) populations, tested hierarchically.
Purpose: To evaluate the addition of the humanized monoclonal antiprogrammed death ligand-1 (PD-L1) antibody, atezolizumab, to platinum-based chemotherapy and bevacizumab in newly diagnosed stage III or IV ovarian cancer (OC).
Methods: This multicenter placebo-controlled double-blind randomized phase III trial (ClinicalTrials.gov identifier: NCT03038100) enrolled patients with newly diagnosed untreated International Federation of Gynecology and Obstetrics (FIGO) stage III or IV OC who either had undergone primary cytoreductive surgery with macroscopic residual disease or were planned to receive neoadjuvant chemotherapy and interval surgery.
Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood.
View Article and Find Full Text PDFWithin cells, lipids are stored in the form of lipid droplets (LDs), consisting of a neutral lipid core, surrounded by a phospholipid monolayer and an outer layer of protein. LDs typically accumulate either triacylglycerol (TAG) and diacylglycerol or cholesteryl ester (CE), depending on the type of tissue. Recently, there has been an increased interest in the proteins that surround LDs.
View Article and Find Full Text PDFPurpose Of Review: With the realization that lipid droplets are not merely inert fat storage organelles, but highly dynamic and actively involved in cellular lipid homeostasis, there has been an increased interest in lipid droplet biology. Recent studies have begun to unravel the roles that lipid dropletss play in cellular physiology and provide insights into the mechanisms by which lipid droplets contribute to cellular homeostasis. This review provides a summary of these recent publications on lipid droplet metabolism.
View Article and Find Full Text PDFIntracellular lipid droplets (LDs) are dynamic organelles that contain a number of associated proteins including perilipin (Plin) and vimentin. Cholesteryl ester (CE)-rich LDs normally accumulate in steroidogenic cells and their mobilization is the preferred initial source of cholesterol for steroidogenesis. Plin1a, 1b and 5 were found to preferentially associate with triacylglycerol-rich LDs and Plin1c and Plin4 to associate with CE-rich LDs, but the biological significance of this remains unanswered.
View Article and Find Full Text PDFContext And Objective: Estrogen sulfotransferase (EST) catalyzes the inactivation of estrone and estradiol in numerous tissues. Animal studies suggest that EST modulates glucose and lipid metabolism in adipose tissue, but it is unknown whether EST is expressed in human adipose tissue and, if so, how its expression relates to features of the metabolic syndrome.
Design And Participants: Cross-sectional data from 16 obese men and women with metabolic dysregulation were collected as part of a larger randomized trial at an academic medical center.
Context And Objective: Obesity is associated with activation of the TNF-α system, increased inflammatory markers, and insulin resistance. Although studies in rodents suggest that attenuation of TNF activity improves glucose homeostasis, the effect of prolonged inhibition of TNF-α with etanercept on inflammation and glucose homeostasis in a human model of obesity is not known.
Design And Participants: Forty obese subjects with features of metabolic syndrome were randomized to etanercept or placebo, 50 mg twice weekly for 3 months, followed by 50 mg once weekly for 3 months.
Am J Physiol Endocrinol Metab
October 2010
Estrogen regulates fat mass and distribution and glucose metabolism. We have previously found that estrogen sulfotransferase (EST), which inactivates estrogen through sulfoconjugation, was highly expressed in adipose tissue of male mice and induced by testosterone in female mice. To determine whether inhibition of estrogen in female adipose tissue affects adipose mass and metabolism, we generated transgenic mice expressing EST via the aP2 promoter.
View Article and Find Full Text PDFAlthough primarily regarded as a sex steroid, estrogen plays an important role in many other physiological processes including adipose development and disposition. Estrogen sulfotransferase (EST) regulates estrogen activity by catalyzing the sulfoconjugation and inactivation of estrogens. In the present study, we report the gender-specific expression of EST in adipose tissues of the mouse and describe contrasting mechanisms of EST regulation in the fat and liver.
View Article and Find Full Text PDFWe have previously reported the presence of a DNA gyrase-like topoisomerase activity associated with the 35kb apicoplast DNA in the malarial parasite Plasmodium falciparum [Weissig V, Vetro-Widenhouse TS, Rowe TC. Topoisomerase II inhibitors induce cleavage of nuclear and 35kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell Biol 1997;16:1483].
View Article and Find Full Text PDF