Publications by authors named "Victor Kam"

Electrochemistry at the liquid-liquid interface enables the detection of nonredoxactive species with electroanalytical techniques. In this work, the electrochemical behavior of two food additives, aspartame and acesulfame K, was investigated. Both ions were found to undergo ion-transfer voltammetry at the liquid-liquid interface.

View Article and Find Full Text PDF

Seryl-tRNA synthetase (SerRS) charges serine to tRNA(Ser) following the formation of a seryl adenylate intermediate, but the extent to which other non-cognate amino acids compete with serine to bind to SerRS or for the formation of the activated seryl adenylate intermediate is not known. To examine the mechanism of discrimination against non-cognate amino acids, we calculated the relative binding energies of the 20 natural amino acids to SerRS. Starting with the crystal structure of SerRS from Thermus thermophilus with seryl adenylate bound, we used the HierDock and SCREAM (Side-Chain Rotamer Energy Analysis Method) computational methods to predict the binding conformation and binding energy of each of the 20 natural amino acids in the binding site in the best-binding mode and the activating mode.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembStruk first principles computational method for predicting the three-dimensional structure of GPCRs.

View Article and Find Full Text PDF

Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.

View Article and Find Full Text PDF

We report the 3D structure of human beta2 adrenergic receptor (AR) predicted by using the MembStruk first principles method. To validate this structure, we use the HierDock first principles method to predict the ligand-binding sites for epinephrine and norepinephrine and for eight other ligands, including agonists and antagonists to beta 2 AR and ligands not observed to bind to beta 2 AR. The binding sites agree well with available mutagenesis data, and the calculated relative binding energies correlate reasonably with measured binding affinities.

View Article and Find Full Text PDF