LiMnO (LMO) cathodes present large stability when cycled in aqueous electrolytes, contrasting with their behavior in conventional organic electrolytes in lithium-ion batteries (LIBs). To elucidate the mechanisms underlying this distinctive behavior, we employ unconventional characterization techniques, including variable energy positron annihilation lifetime spectroscopy (VEPALS), tip-enhanced Raman spectroscopy (TERS), and macro-Raman spectroscopy (with tens of μm-size laser spot). These still rather unexplored techniques in the battery field provide complementary information across different length scales, revealing previously hidden features.
View Article and Find Full Text PDFRecently, the interest for the family of low dimensional materials has increased significantly due to the anisotropic nature of their fundamental properties. Among them, antimony sulfide (SbS) is considered a suitable material for various solid-state devices. Although the main advantages and physicochemical properties of SbS are known, some doubtful information remains in literature and methodologies to easily assess its critical properties are missing.
View Article and Find Full Text PDFThin film photovoltaic (TFPV) materials and devices present a high complexity with multiscale, multilayer, and multielement structures and with complex fabrication procedures. To deal with this complexity, the evaluation of their physicochemical properties is critical for generating a model that proposes strategies for their development and optimization. However, this process is time-consuming and requires high expertise.
View Article and Find Full Text PDFOxidative stress is involved in many aging-related pathological disorders and is the result of defective cellular management of redox reactions. Particularly, hydrogen peroxide (HO), is a major byproduct and a common oxidative stress biomarker. Monitoring its dynamics and a direct correlation to diseases remains a challenge due to the complexity of redox reactions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
SbSe is a quasi-one-dimensional (1D) semiconductor, which has shown great promise in photovoltaics. However, its performance is currently limited by a high deficit. Therefore, it is necessary to explore new strategies to minimize the formation of intrinsic defects and thus unlock the absorber's whole potential.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Accurate anionic control during the formation of chalcogenide solid solutions is fundamental for tuning the physicochemical properties of this class of materials. Compositional grading is the key aspect of band gap engineering and is especially valuable at the device interfaces for an optimum band alignment, for controlling interface defects and recombination and for optimizing the formation of carrier-selective contacts. However, a simple and reliable technique that allows standardizing anionic compositional profiles is currently missing for kesterites and the feasibility of achieving a compositional gradient remains a challenging task.
View Article and Find Full Text PDFFabrication on transparent soda-lime glass/fluorine-doped tin oxide (FTO) substrates opens the way to advanced applications for kesterite solar cells such as semitransparent, bifacial, and tandem devices, which are key to the future of the PV market. However, the complex behavior of the p-kesterite/n-FTO back-interface potentially limits the power conversion efficiency of such devices. Overcoming this issue requires careful interface engineering.
View Article and Find Full Text PDFThis work presents the development of a novel chalcogenization process for the fabrication of CuZnSn(S,Se) (CZTSSe or kesterite)-based solar cells that enable the generation of sharp graded anionic compositional profiles with high S content at the top and low S content at the bottom. This is achieved through the optimization of the annealing parameters including the study of several sulfur sources with different predicted reactivities (elemental S, thiourea, SnS, and SeS). As a result, depending on the sulfur source employed, devices with superficially localized maximum sulfur content between 50 and 20% within the charge depletion zone and between 10 and 30% toward the bulk material are obtained.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2019
High nonradiative recombination, low diffusion length and band tailing are often associated with a large open circuit voltage deficit, which results in low efficiency of CuZnSnS (CZTS) solar cells. Recently, cation substitution in CZTS has gained interest as a plausible solution to suppress these issues. However, the common substitutes, Ag and Cd, are not ideal due to their scarcity and toxicity.
View Article and Find Full Text PDFSix different thin film solar cells consisting of either orthorhombic (α-SnS) or cubic (π-SnS) tin(ii) sulfide absorber layers have been fabricated, characterized and evaluated. Absorber layers of either π-SnS or α-SnS were selectively deposited by temperature controlled Aerosol Assisted Chemical Vapor Deposition (AA-CVD) from a single source precursor. α-SnS and π-SnS layers were grown on molybdenum (Mo), Fluorine-doped Tin Oxide (FTO), and FTO coated with a thin amorphous-TiO layer (am-TiO -FTO), which were shown to have significant impact on the growth rate and morphology of the as deposited thin films.
View Article and Find Full Text PDFThe latest progress and future perspectives of thin film photovoltaic kesterite technology are reviewed herein. Kesterite is currently the most promising emerging fully inorganic thin film photovoltaic technology based on critical raw-material-free and sustainable solutions. The positioning of kesterites in the frame of the emerging inorganic solar cells is first addressed, and the recent history of this family of materials briefly described.
View Article and Find Full Text PDFCZTS/Se kesterite-based solar cells have been protected by conformal atomic layer deposition (ALD)-deposited TiO demonstrating its feasibility as powerful photocathodes for water splitting in highly acidic conditions (pH < 1), achieving stability with no detected degradation and with current density levels similar to photovoltaic productivities. The ALD has allowed low deposition temperatures of 200 °C for TiO, preventing significant variations to the kesterite structure and CdS heterojunction, except for the pure-sulfide stoichiometry, which was studied by Raman spectroscopy. The measured photocurrent at 0 V vs reversible hydrogen electrode, 37 mA·cm, is the highest reported to date, and the associated half-cell solar-to-hydrogen efficiency reached 7%, being amongst the largest presented for kesterite-based photocathodes, corroborating the possibility of using them as abundant low-cost alternative photoabsorbers as their efficiencies are improved toward those of chalcopyrites.
View Article and Find Full Text PDFThe introduction of the alkaline-earth element Magnesium (Mg) into CuZnSn(S,Se) (CTZSSe) is explored in view of potential photovoltaic applications. CuZnMgSn(S,Se) absorber layers with variable Mg content = 0…1 are deposited using the solution approach with dimethyl sulfoxide solvent followed by annealing in selenium atmosphere. For heavy Mg alloying with = 0.
View Article and Find Full Text PDFThis work reports a detailed resonant Raman scattering analysis of ZnMgO solid solution nanometric layers that are being developed for high efficiency chalcogenide solar cells. This includes layers with thicknesses below 100 nm and compositions corresponding to Zn/(Zn + Mg) content rations in the range between 0% and 30%. The vibrational characterization of the layers grown with different compositions and thicknesses has allowed deepening in the knowledge of the sensitivity of the different Raman spectral features on the characteristics of the layers, corroborating the viability of resonant Raman scattering based techniques for their non-destructive quantitative assessment.
View Article and Find Full Text PDFThis work presents a comprehensive analysis of the structural and vibrational properties of the kesterite CuZnSnS (CZTS, I4̅ space group) as well as its polymorphs with the space groups P4̅2c and P4̅2m, from both experimental and theoretical point of views. Multiwavelength Raman scattering measurements performed on bulk CZTS polycrystalline samples were utilized to experimentally determine properties of the most intense Raman modes expected in these crystalline structures according to group theory analysis. The experimental results compare well with the vibrational frequencies that have been computed by first-principles calculations based on density functional theory.
View Article and Find Full Text PDFIn recent years, there has been an impressively fast technological progress in the development of highly efficient lead halide perovskite solar cells. However, the stability of perovskite films and respective solar cells is still an open point of concern and calls for advanced characterization methods. In this work, we identify appropriate measurement conditions for a meaningful analysis of spin-coated absorber-grade perovskite thin films based on methylammonium (MA) lead iodide (MAPbI) by Raman spectroscopy.
View Article and Find Full Text PDFMicrostructural properties of Cu2ZnSn(S(x)Se(1-x))4 kesterite solid solutions were investigated using grazing incidence X-ray diffraction for the full interval of anion compositions in order to explore the influence of S and Se atoms on the thin film morphology. Thin films were prepared by sputtering deposition of metallic precursors, which were then submitted to a high temperature sulfo-selenization process. By adjusting process parameters samples from sulfur- to selenium-pure (0 ≤ x ≤ 1) were made.
View Article and Find Full Text PDFCu2SnZn(S,Se)4 (CZTSSe) solar cells based on earth abundant and nontoxic elements currently achieve efficiencies exceeding 12%. It has been reported that, to obtain high efficiency devices, a post thermal treatment of absorbers or devices at temperatures ranging between 150 and 400 °C (post low temperature treatment, PLTT) is advisable. Recent findings point toward a beneficial passivation of grain boundaries with SnOx or Cu-depleted surface and grain boundaries during the PLTT process, but no investigation regarding alkali doping is available, even though alkali dynamics, especially Na, are systematically reported to be crucial within the field.
View Article and Find Full Text PDFA non-destructive Raman spectroscopy has been widely used as a complimentary method to X-ray diffraction characterization of Cu2ZnSnS4 (CZTS) thin films, yet our knowledge of the Raman active fundamental modes in this material is far from complete. Focusing on polarized Raman spectroscopy provides important information about the relationship between Raman modes and CZTS crystal structure. In this framework the zone-center optical phonons of CZTS, which is most usually examined in active layers of the CZTS based solar cells, are studied by polarized resonant and non-resonant Raman spectroscopy in the range from 60 to 500 cm(-1) on an oriented single crystal.
View Article and Find Full Text PDFBulk crystals of Cu(2)ZnSiTe(4) (CZSiTe) have been prepared by modified Bridgman method and have been investigated by single crystal X-ray method, Energy Dispersive X-Ray analysis and Raman scattering techniques. The structural studies revealed that the CZSiTe compounds crystallizes in the tetragonal space group I4¯2m, with a = b = 5.9612(1) Å and c = 11.
View Article and Find Full Text PDFThe control and removal of secondary phases is one of the major challenges for the development of Cu2ZnSn(S,Se)4 (CZTSSe)-based solar cells. Although etching processes have been developed for Cu(S,Se), Zn(S,Se), and CuSn(S,Se) secondary phases, so far very little attention has been given to the role of Sn(S,Se). In this paper, we report a chemical route using a yellow (NH4)2S solution to effectively remove Sn(S,Se).
View Article and Find Full Text PDFCu2ZnSnSe4 kesterite compounds are some of the most promising materials for low-cost thin-film photovoltaics. However, the synthesis of absorbers for high-performing devices is still a complex issue. So far, the best devices rely on absorbers grown in a Zn-rich and Cu-poor environment.
View Article and Find Full Text PDFWe investigate CZTSe films by polarization dependent Raman spectroscopy. The main peaks at 170 cm(-1), and 195 cm(-1) are found to have A symmetry. The Raman signal at 170 cm(-1) is found to be composed of two modes at 168 cm(-1) and 172 cm(-1).
View Article and Find Full Text PDFPentenary Cu2ZnSn(S(y)Se(1-y))4 (kesterite) photovoltaic absorbers are synthesized by a one-step annealing process from copper-poor and zinc-rich precursor metallic stacks prepared by direct-current magnetron sputtering deposition. Depending on the chalcogen source--mixtures of sulfur and selenium powders, or selenium disulfide--as well as the annealing temperature and pressure, this simple methodology permits the tuning of the absorber composition from sulfur-rich to selenium-rich in one single annealing process. The impact of the thermal treatment variables on chalcogenide incorporation is investigated.
View Article and Find Full Text PDFImprovement of the efficiency of Cu(2)ZnSnS(4) (CZTS)-based solar cells requires the development of specific procedures to remove or avoid the formation of detrimental secondary phases. The presence of these phases is favored by the Zn-rich and Cu-poor conditions that are required to obtain device-grade layers. We have developed a selective chemical etching process based on the use of hydrochloric acid solutions to remove Zn-rich secondary phases from the CZTS film surface, which are partly responsible for the deterioration of the series resistance of the cells and, as a consequence, the conversion efficiency.
View Article and Find Full Text PDF