The diversity and the stability of the microbial community are associated with microecological interactions between its members. Antagonism is one type of interaction, which particularly determines the benefits that probiotics bring to host health by suppressing opportunistic pathogens and microbial contaminants in food. Mathematical models allow for quantitatively predicting intrapopulation relationships.
View Article and Find Full Text PDFThe health benefits of probiotics are beyond doubt. The positive effects of lactobacilli and bifidobacteria on the function of many body systems have been repeatedly proven by various studies. To completely realize the potential of probiotic microorganisms, the strains should be tested by the greatest combination of characteristics that contribute to the wellness of the host.
View Article and Find Full Text PDFA number of mechanisms have been proposed explaining probiotics and prebiotics benefit human health, in particular, probiotics have a suppression effect on pathogen growth that can be enhanced with the introduction of prebiotics. In vitro models enhanced with computational biology can be useful for selecting a composition with prebiotics from new plant sources with the greatest synergism. Water extracts from burdock root and Jerusalem artichoke tubers were purified by ultrafiltration and activated charcoal and concentrated on a rotary evaporator.
View Article and Find Full Text PDFThe present study is dedicated to the development of novel criteria for assessing the synbiotic effect of prebiotic and probiotic composition against a specific pathogen. These criteria were obtained from the quantitative model of Bifidobacterium adolescentis ATCC 15703 and Bacillus cereus ATCC 9634 (as a model food contaminant) competition in co-culture fermentation. The model is based on the hypothesis that probiotics can reduce the specific growth rate of non-probiotics by producing short-chain fatty acids.
View Article and Find Full Text PDFSpray drying is appropriate for the preservation of halophilic microorganisms due to the nature of these microorganisms, as they survive in adverse environmental conditions by being encapsulated in salt crystals. Artificial neural networks were in this study used to optimize practically significant spray-drying regimes of the C-carotenoids producer Halobacterium salinarum. Immediately after drying, the samples contained up to 54% halobacterial biomass and less than 5% moisture, and the level of preservation of carotenoids was 95-97%.
View Article and Find Full Text PDF