In this study, titanium oxide TiO nanoparticles were produced using the sol-gel approach of green synthesis with pectin as the reducing agent. The synthetized TiO nanoparticles with pectin were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), visible light absorption (UV-Vis) and the BET method. The structure and morphology of the TiO powder were described with SEM, revealing uniform monodisperse grains with a distribution of 80% regarding sizes < 250 nm; the resulting crystal phase of synthetized TiO was identified as an anatase and rutile phase with a crystallinity size estimated between 27 and 40 nm.
View Article and Find Full Text PDFLuminescent solar concentrators (LSCs) have become an attractive way to produce green energy via their integration into buildings as photovoltaic windows. Recently, carbon quantum dots (C-QDs) have become the most studied luminescent material for the manufacture of luminescent solar concentrators due to their advantages, such as low toxicity, sustainability, and low cost. Despite the advantages of carbon quantum dots, they remain a low-efficiency material, and it is difficult to fabricate LSCs with a good performance.
View Article and Find Full Text PDFIn this paper, a model for Cr (VI) removal and optimization was made using a novel aerogel material, chitosan-resole CS/R aerogel, where a freeze-drying and final thermal treatment was employed to fabricate the aerogel. This processing ensures a network structure and stability for the CS, despite the non-uniform ice growth promoted by this process. Morphological analysis indicated a successful aerogel elaboration process.
View Article and Find Full Text PDFRSC Adv
December 2020
Polydimethylsiloxane (PDMS) nanocomposite (NC) macroporous films were prepared by a Pickering high internal phase emulsion (HIPE) templating technique and used as effective dielectrics for enhancing the performance of triboelectric-nanogenerators (TENGs). HIPEs were formulated using commercial PDMS and water as the continuous and dispersed phase, respectively. The formation and solidification of PDMS-based HIPEs were possible through stabilization with silver-nanoparticles (Ag-Nps) and surfactant (Span 20) mixtures.
View Article and Find Full Text PDF