In this research, a brush-like polyaniline (poly(2-acrylamide-2-methyl-1-propanesulfonate)--polyaniline)--poly(-vinylcarbazole) (BL PAni) was developed as a strategy to overcome the limited processability and dedoping above pH 4 of conventional polyaniline (PAni). For the BL PAni synthesis, RAFT polymerization (homopolymer), RAFT-mediated surfactant-free emulsion polymerization (block copolymer), and interfacial oxidative polymerization were applied to graft the PAni chains. NMR and FT-IR spectroscopies were performed to confirm the structural elucidation of the reaction pathways, while the thermal properties were analyzed by TGA and DSC.
View Article and Find Full Text PDFLactose is commonly crystallized in the presence of whey proteins, forming co-crystals of lactose and proteins. This work hypothesized that flavonoids such as rutin or epigallocatechin-3-gallate (EGCG) could be incorporated into the lactose and protein co-crystal structure since flavonoids may interact with both lactose and proteins. The interactions between whey proteins and flavonoids were first studied.
View Article and Find Full Text PDFKetoprofen is a commercially available drug sold as a racemic mixture that belongs to the family of non-steroidal anti-inflammatory drugs known as profens. It has been demonstrated (in vitro) that ()-ketoprofen is around 160 times more potent than its enantiomer ()-ketoprofen, while accumulation of ()-ketoprofen can cause serious side effects, such as dyspepsia, gastrointestinal ulceration/bleeding, pain, salt and fluid retention, and hypertension. In this work, four commercially available lipases were systematically assessed.
View Article and Find Full Text PDFIt has been reported that polysaccharides like carrageenan can change the crystallization of lactose. However, it is still unclear whether changes in lactose mutarotation, solubility, and super-solubility are involved in carrageenans' effect on lactose crystallization. It has been established that the conversion of α- to β-lactose forms (mutarotation) in an aqueous solution has a significant impact on lactose crystallization.
View Article and Find Full Text PDFThe electrochemical oxidation of sulfite ions offers encouraging advantages for large-scale hydrogen production, while sulfur dioxide emissions can be effectively used to obtain value-added byproducts. Herein, the performance and stability during sulfite electrolysis under alkaline conditions are evaluated. Nickel foam (NF) substrates were functionalized as the anode and cathode through electrochemical deposition of palladium and chemical oxidation to carry out the sulfite electro-oxidation and hydrogen evolution reactions, respectively.
View Article and Find Full Text PDFLactose is recovered by crystallization from cheese whey that is a by-product of cheesemaking. The whey used for the recovery of lactose usually has a residual content of protein that alters the crystallization of lactose. In addition, the pH of whey may fluctuate depending on the cheese variety.
View Article and Find Full Text PDFNowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives.
View Article and Find Full Text PDFPalladium-based electrocatalysts are widely used in alkaline direct alcohol fuel cells. The synthesis and characterization of carbon-supported bimetallic nanoparticles (NP) of AuPd and AgPd is described using pecan nutshell extract () which serves as both, reducing and the stabilizing agent. This environmentally friendly route generates bimetallic NP for a wide range of applications, including electrocatalysis; since particularly AuPd NP proved to be a potentially suitable electrode material for alkaline direct methanol fuel cells.
View Article and Find Full Text PDFBackground: Malathion (R,S)-diethyl-2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate is a chiral organophosphorus compound used widely as pesticide for suppression of harmful insects such as mosquitoes. It is well known that in biological systems (R)-malathion is the active enantiomer, therefore a sustainable approach could be the use of only the biologically active enantiomer. The resolution of the commercial racemic mixture to obtain the pure active enantiomer combined with a recycling of the undesired enantiomer through a racemization process could be an attractive alternative to reduce the environmental impact of this pesticide.
View Article and Find Full Text PDFA palladium mediated synthesis of a common synthon for the syntheses of antioxidant analogues of naturally occurring salvianolic acids is presented. The synthetic route may be used to obtain analogues with a balanced lipophilicity/hydrophilicity which may result in potentially interesting LDL antioxidants for the prevention of cardiovascular diseases.
View Article and Find Full Text PDFA series of pyrene-fullerene C60 dyads bearing pyrene units (PyFC12, PyFPy, Py2FC12 and PyFN) were synthesized and characterized. Their optical properties were studied by absorption and fluorescence spectroscopies. Dyads were designed in this way because the pyrene moeities act as light-harvesting molecules and are able to produce "monomer" (PyFC12) or excimer emission (PyFPy, Py2FC12 and PyFN).
View Article and Find Full Text PDF