We study the room-temperature electrical control of charge and spin transport in high-quality bilayer graphene, fully encapsulated with hBN and contacted via 1D spin injectors. We show that spin transport in this device architecture is measurable at room temperature and its spin transport parameters can be modulated by opening of a band gap via a perpendicular displacement field. The modulation of the spin current is dominated by the control of the spin relaxation time with displacement field, demonstrating the basic operation of a spin-based field-effect transistor.
View Article and Find Full Text PDFRecent experiments demonstrated that interfacial water dissociation (HO ⇆ H + OH) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields.
View Article and Find Full Text PDFSpintronics involves the development of low-dimensional electronic systems with potential use in quantum-based computation. In graphene, there has been significant progress in improving spin transport characteristics by encapsulation and reducing impurities, but the influence of standard two-dimensional (2D) tunnel contacts, via pinholes and doping of the graphene channel, remains difficult to eliminate. Here, we report the observation of spin injection and tunable spin signal in fully encapsulated graphene, enabled by van der Waals heterostructures with one-dimensional (1D) contacts.
View Article and Find Full Text PDF