Background: Neurotrophins are essential factors for neural growth and function; they play a crucial role in neurodegenerative diseases where their expression levels are altered. Our previous research has demonstrated changes in synaptic plasticity and neurotrophin expression levels in a pharmacological model of Huntington's disease (HD) induced by 3-nitropropionic acid (3-NP). In the 3-NP-induced HD model, corticostriatal Long Term Depression (LTD) was impaired, but neurotrophin- 3 (NT-3) restored striatal LTD.
View Article and Find Full Text PDFNeurotrophins are related to survival, growth, differentiation and neurotrophic maintenance as well as modulation of synaptic transmission in different regions of the nervous system. BDNF effects have been studied in the striatum due to the trophic role of BDNF in medium spiny neurons; however, less is known about the effects of NT-4/5, which is also present in the striatum and activates the TrkB receptor along with BDNF. If both neurotrophins are present in the striatum, the following question arises: What role do they play in striatal physiology? Thus, the aim of this study was to determine the physiological effect of the sequential application and coexistence of BDNF and NT-4/5 on the modulation of corticostriatal synapses.
View Article and Find Full Text PDFAims: Neurotrophin-3 (NT-3) is expressed in the mouse striatum; however, it is not clear the NT-3 role in striatal physiology. The expression levels of mRNAs and immune localization of the NT-3 protein and its receptor TrkC are altered in the striatum following damage induced by an in vivo treatment with 3-nitropropionic acid (3-NP), a mitochondrial toxin used to mimic the histopathological hallmarks of Huntington's disease (HD). The aim of this study was to evaluate the role of NT-3 on corticostriatal synaptic transmission and its plasticity in both the control and damaged striatum.
View Article and Find Full Text PDF